Skew products, regular conditional probabilities and stochastic differential equations : a technical remark
Séminaire de probabilités de Strasbourg, Tome 26 (1992), pp. 113-126.
@article{SPS_1992__26__113_0,
     author = {Taylor, John C.},
     title = {Skew products, regular conditional probabilities and stochastic differential equations : a technical remark},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {113--126},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {26},
     year = {1992},
     mrnumber = {1231988},
     zbl = {0763.60031},
     language = {en},
     url = {http://www.numdam.org/item/SPS_1992__26__113_0/}
}
TY  - JOUR
AU  - Taylor, John C.
TI  - Skew products, regular conditional probabilities and stochastic differential equations : a technical remark
JO  - Séminaire de probabilités de Strasbourg
PY  - 1992
SP  - 113
EP  - 126
VL  - 26
PB  - Springer - Lecture Notes in Mathematics
UR  - http://www.numdam.org/item/SPS_1992__26__113_0/
LA  - en
ID  - SPS_1992__26__113_0
ER  - 
%0 Journal Article
%A Taylor, John C.
%T Skew products, regular conditional probabilities and stochastic differential equations : a technical remark
%J Séminaire de probabilités de Strasbourg
%D 1992
%P 113-126
%V 26
%I Springer - Lecture Notes in Mathematics
%U http://www.numdam.org/item/SPS_1992__26__113_0/
%G en
%F SPS_1992__26__113_0
Taylor, John C. Skew products, regular conditional probabilities and stochastic differential equations : a technical remark. Séminaire de probabilités de Strasbourg, Tome 26 (1992), pp. 113-126. http://www.numdam.org/item/SPS_1992__26__113_0/

[1] M. Emery, Manifold-valued semimartingales and martingales, Springer Verlag, New York, Berlin, 1989.

[2] S. Helgason, Groups and Geometric Analysis, Academic Press, Orlando, Florida, 1984. | MR | Zbl

[3] N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, North-Holland/Kodansha, Amsterdam/Tokyo, 1981. | MR | Zbl

[4] M.P. Malliavin and P. Malliavin, Lecture Notes in Mathematics 404 (Théorie du Potentiel et Analyse Harmonique), Springer-Verlag, Berlin, 1974. | Zbl

[5] P. Malliavin, Géometrie différentielle stochastique, Seminaire de Mathématiques Supérieures 64, Presses de l'Université de Montréal, Montréal, 1978. | MR | Zbl

[6] E.J. Pauwels and L.C.G. Rogers, Skew-product decompositions of Brownian motions, Contemporary Mathematics "Geometry of random motion" 73 (1988), 237-262. | MR | Zbl

[7] C. Stricker et M. Yor, Calcul stochastique dépendant d'un paramètre, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 45 (1978), 109-133. | MR | Zbl

[8] F. Trèves, Topological vector spaces, distributions, and kernels, Academic Press, New York, 1967. | MR | Zbl