This note presents a numerical method based on optimal transport to construct minimal geodesics along the group of volume preserving maps, equipped with the metric. As observed by Arnold, such geodesics solve the Euler equations of inviscid incompressible fluids. The method relies on the generalized polar decomposition of Brenier, numerically implemented through semi-discrete optimal transport and it is robust enough to extract non-classical, multi-valued solutions of Euler’s equations predicted by Brenier and Schnirelman [Mérigot and Mirebeau, SIAM J. Num. Anal., 54(6), 2016]. In a second part, we explain how this approach also leads to a numerical scheme able to approximate regular solutions to the Cauchy problem for Euler’s equations [Gallouët and Mérigot, J. Found Comput Math, 2017].
@article{SLSEDP_2016-2017____A4_0, author = {M\'erigot, Quentin}, title = {Discretization of {Euler{\textquoteright}s} equations using optimal transport: {Cauchy} and boundary value problems}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:4}, pages = {1--12}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2016-2017}, doi = {10.5802/slsedp.109}, language = {en}, url = {http://www.numdam.org/articles/10.5802/slsedp.109/} }
TY - JOUR AU - Mérigot, Quentin TI - Discretization of Euler’s equations using optimal transport: Cauchy and boundary value problems JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:4 PY - 2016-2017 SP - 1 EP - 12 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://www.numdam.org/articles/10.5802/slsedp.109/ DO - 10.5802/slsedp.109 LA - en ID - SLSEDP_2016-2017____A4_0 ER -
%0 Journal Article %A Mérigot, Quentin %T Discretization of Euler’s equations using optimal transport: Cauchy and boundary value problems %J Séminaire Laurent Schwartz — EDP et applications %Z talk:4 %D 2016-2017 %P 1-12 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U http://www.numdam.org/articles/10.5802/slsedp.109/ %R 10.5802/slsedp.109 %G en %F SLSEDP_2016-2017____A4_0
Mérigot, Quentin. Discretization of Euler’s equations using optimal transport: Cauchy and boundary value problems. Séminaire Laurent Schwartz — EDP et applications (2016-2017), Exposé no. 4, 12 p. doi : 10.5802/slsedp.109. http://www.numdam.org/articles/10.5802/slsedp.109/
[AF07] Luigi Ambrosio and Alessio Figalli. On the regularity of the pressure field of Brenier’s weak solutions to incompressible Euler equations. Calculus of Variations and Partial Differential Equations, 2007. | DOI | MR
[AHA98] F Aurenhammer, F Hoffmann, and B Aronov. Minkowski-type theorems and least-squares clustering. Algorithmica, 1998. | DOI | MR | Zbl
[Arn66] Vladimir Arnold. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Annales de l’institut Fourier, 1966. | DOI | Numdam
[BCMO14] Jean-David Benamou, Guillaume Carlier, Quentin Mérigot, and Edouard Oudet. Discretization of functionals involving the Monge-Ampère operator. 2014. | arXiv | DOI | Zbl
[BL04] Yann Brenier and Grégoire Loeper. A geometric approximation to the Euler equations: the Vlasov–Monge–Ampère system. Geometric And Functional Analysis, 14(6):1182–1218, 2004. | DOI | Zbl
[Bre91] Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Communications on Pure and Applied Mathematics, 1991. | DOI | MR | Zbl
[Bre93] Yann Brenier. The dual least action principle for an ideal, incompressible fluid. Archive for rational mechanics and analysis, 1993. | DOI | MR
[Bre00] Yann Brenier. Derivation of the Euler equations from a caricature of Coulomb interaction. Communications in Mathematical Physics, 212(1):93–104, 2000. | DOI | MR | Zbl
[Bre08] Yann Brenier. Generalized solutions and hydrostatic approximation of the Euler equations. Physica D. Nonlinear Phenomena, 2008. | DOI | MR | Zbl
[Bre89a] Yann Brenier. A combinatorial algorithm for the Euler equations of incompressible flows. Computer methods in applied mechanics and engineering, 75(1-3):325–332, 1989. | DOI | MR | Zbl
[Bre89b] Yann Brenier. The least action principle and the related concept of generalized flows for incompressible perfect fluids. Journal of the American Mathematical Society, 1989. | DOI | MR | Zbl
[cga] CGAL, Computational Geometry Algorithms Library. http://www.cgal.org. | DOI
[CGP07] Mike Cullen, Wilfrid Gangbo, and Giovanni Pisante. The semigeostrophic equations discretized in reference and dual variables. Archive for rational mechanics and analysis, 185(2):341–363, 2007. | DOI | MR | Zbl
[dGBOD12] Fernando de Goes, Katherine Breeden, Victor Ostromoukhov, and Mathieu Desbrun. Blue noise through optimal transport. ACM Transactions on Graphics (TOG), 2012. | DOI
[dGWH+15] Fernando de Goes, Corentin Wallez, Jin Huang, Dmitry Pavlov, and Mathieu Desbrun. Power particles: an incompressible fluid solver based on power diagrams. ACM Trans. Graph., 34(4):50–1, 2015. | DOI | Zbl
[Eul65] Leonhard Euler. Opera Omnia. 1765.
[FD12] Alessio Figalli and S Daneri. Variational models for the incompressible Euler equations. HCDTE Lecture Notes, Part II, 2012. | DOI
[GM17] Thomas O Gallouët and Quentin Mérigot. A Lagrangian scheme à la Brenier for the incompressible Euler equations. Foundations of Computational Mathematics, pages 1–31, 2017. | DOI | MR | Zbl
[Gru04] Peter M Gruber. Optimum quantization and its applications. Advances in Mathematics, 2004. | DOI | MR | Zbl
[Lév14] Bruno Lévy. A numerical algorithm for semi-discrete optimal transport in 3D. arXiv.org, 2014. | DOI
[MM16] Quentin Mérigot and Jean-Marie Mirebeau. Minimal geodesics along volume-preserving maps, through semidiscrete optimal transport. SIAM Journal on Numerical Analysis, 54(6):3465–3492, 2016. | DOI | MR | Zbl
[Shn94] A I Shnirelman. Generalized fluid flows, their approximation and applications. Geometric and Functional Analysis, 1994. | DOI | MR | Zbl
Cité par Sources :