On the transport of Gaussian measures under the flow of Hamiltonian PDEs
Séminaire Laurent Schwartz — EDP et applications (2015-2016), Exposé no. 6, 9 p.
Publié le :
DOI : 10.5802/slsedp.84
Oh, Tadahiro 1 ; Tzvetkov, Nikolay 2

1 School of Mathematics The University of Edinburgh and The Maxwell Institute for the Mathematical Sciences James Clerk Maxwell Building The King’s Buildings Peter Guthrie Tait Road Edinburgh EH9 3FD United Kingdom
2 Université de Cergy-Pontoise 2 avenue Adolphe Chauvin 95302 Cergy-Pontoise Cedex France
@article{SLSEDP_2015-2016____A6_0,
     author = {Oh, Tadahiro and Tzvetkov, Nikolay},
     title = {On the transport of {Gaussian} measures under the flow of {Hamiltonian} {PDEs}},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:6},
     pages = {1--9},
     publisher = {Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique},
     year = {2015-2016},
     doi = {10.5802/slsedp.84},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/slsedp.84/}
}
TY  - JOUR
AU  - Oh, Tadahiro
AU  - Tzvetkov, Nikolay
TI  - On the transport of Gaussian measures under the flow of Hamiltonian PDEs
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:6
PY  - 2015-2016
SP  - 1
EP  - 9
PB  - Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique
UR  - http://www.numdam.org/articles/10.5802/slsedp.84/
DO  - 10.5802/slsedp.84
LA  - en
ID  - SLSEDP_2015-2016____A6_0
ER  - 
%0 Journal Article
%A Oh, Tadahiro
%A Tzvetkov, Nikolay
%T On the transport of Gaussian measures under the flow of Hamiltonian PDEs
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:6
%D 2015-2016
%P 1-9
%I Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique
%U http://www.numdam.org/articles/10.5802/slsedp.84/
%R 10.5802/slsedp.84
%G en
%F SLSEDP_2015-2016____A6_0
Oh, Tadahiro; Tzvetkov, Nikolay. On the transport of Gaussian measures under the flow of Hamiltonian PDEs. Séminaire Laurent Schwartz — EDP et applications (2015-2016), Exposé no. 6, 9 p. doi : 10.5802/slsedp.84. http://www.numdam.org/articles/10.5802/slsedp.84/

[1] J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys. 166 (1994), no. 1, 1–26.

[2] R. Cameron, W. Martin, Transformations of Wiener integrals under translations, Ann. of Math. (2) 45, (1944). 386–396.

[3] A.B. Cruzeiro, Équations différentielles ordinaires: non explosion et mesures quasi-invariantes, (French) J. Funct. Anal. 54 (1983), no. 2, 193–205.

[4] Y. Deng, N. Tzvetkov, N. Visciglia, Invariant measures and long time behaviour for the Benjamin-Ono equation III, Comm. Math. Phys. 339 (2015), no. 3, 815–857.

[5] A. Nahmod, L. Rey-Bellet, S. Sheffield, G. Staffilani, Absolute continuity of Brownian bridges under certain gauge transformations, Math. Res. Lett. 18 (2011), no. 5, 875–887.

[6] T. Oh, Invariance of the white noise for KdV, Comm. Math. Phys. 292 (2009), no. 1, 217–236.

[7] T. Oh, N. Tzvetkov, Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schršdinger equation, . | arXiv

[8] J. Quastel, B. Valkó, KdV preserves white noise, Comm. Math. Phys. 277 (2008), no. 3, 707–714.

[9] R. Ramer, On nonlinear transformations of Gaussian measures, J. Functional Analysis 15 (1974), 166–187.

[10] N. Tzvetkov, Quasi-invariant Gaussian measures for one dimensional Hamiltonian PDE’s, Forum Math. Sigma 3 (2015), e28, 35 pp.

[11] N. Tzvetkov, N. Visciglia, Invariant measures and long-time behavior for the Benjamin-Ono equation, Int. Math. Res. Not. IMRN 2014, no. 17, 4679–4714.

[12] N. Tzvetkov, N. Visciglia, Invariant measures and long time behaviour for the Benjamin-Ono equation II, J. Math. Pures Appl. (9) 103 (2015), no. 1, 102–141.

[13] V. Yudovich, Non-stationary flows of an ideal incompressible fluid, Zh. Vychisl. Math. i Math. Fiz. (1963) 1032–1066 (1963) (in Russian).

[14] P. Zhidkov, On an infinite sequence of invariant measures for the cubic nonlinear Schrödinger equation, Int. J. Math. Math. Sci. 28 (2001), no. 7, 375–394.

[15] P. Zhidkov, Korteweg-de Vries and nonlinear Schrödinger equations: qualitative theory, Lecture Notes in Mathematics, 1756. Springer-Verlag, Berlin, 2001. vi+147 pp.

Cité par Sources :