We present a construction of pure two-bubbles for some energy-critical wave equations, that is solutions which in one time direction approach a superposition of two stationary states both centered at the origin, but asymptotically decoupled in scale. Our solution exists globally, with one bubble at a fixed scale and the other concentrating in infinite time, with an error tending to in the energy space. We treat the cases of the power nonlinearity in space dimension , the radial Yang-Mills equation and the equivariant wave maps equation with equivariance class . The concentration speed of the second bubble is exponential for the first two models and a power function in the last case.
@article{SLSEDP_2015-2016____A21_0, author = {Jendrej, Jacek}, title = {Construction of two-bubble solutions for some energy-critical wave equations}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:21}, pages = {1--10}, publisher = {Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique}, year = {2015-2016}, doi = {10.5802/slsedp.90}, language = {en}, url = {http://www.numdam.org/articles/10.5802/slsedp.90/} }
TY - JOUR AU - Jendrej, Jacek TI - Construction of two-bubble solutions for some energy-critical wave equations JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:21 PY - 2015-2016 SP - 1 EP - 10 PB - Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique UR - http://www.numdam.org/articles/10.5802/slsedp.90/ DO - 10.5802/slsedp.90 LA - en ID - SLSEDP_2015-2016____A21_0 ER -
%0 Journal Article %A Jendrej, Jacek %T Construction of two-bubble solutions for some energy-critical wave equations %J Séminaire Laurent Schwartz — EDP et applications %Z talk:21 %D 2015-2016 %P 1-10 %I Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique %U http://www.numdam.org/articles/10.5802/slsedp.90/ %R 10.5802/slsedp.90 %G en %F SLSEDP_2015-2016____A21_0
Jendrej, Jacek. Construction of two-bubble solutions for some energy-critical wave equations. Séminaire Laurent Schwartz — EDP et applications (2015-2016), Exposé no. 21, 10 p. doi : 10.5802/slsedp.90. http://www.numdam.org/articles/10.5802/slsedp.90/
[1] T. Aubin, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), no. 9, 269–296.
[2] H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math. 121 (1999), no. 1, 131–175.
[3] P. Bizoń, T. Chmaj, and Z. Tabor, Formation of singularities for equivariant dimensional wave maps into the -sphere, Nonlinearity 14 (2001), no. 5, 1041–1053.
[4] A. Bulut, M. Czubak, D. Li, N. Pavlović, and X. Zhang, Stability and unconditional uniqueness of solutions for energy critical wave equations in high dimensions, Comm. Part. Diff. Eq. 38 (2013), no. 4, 575–607.
[5] R. Côte, On the soliton resolution for equivariant wave maps to the sphere, Comm. Pure Appl. Math. 68 (2015), no. 11, 1946–2004.
[6] R. Côte, C. E. Kenig, A. Lawrie, and W. Schlag, Characterization of large energy solutions of the equivariant wave map problem: I, Amer. J. Math. 137 (2015), no. 1, 139–207.
[7] R. Côte, C. E. Kenig, and F. Merle, Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system, Comm. Math. Phys. 284 (2008), no. 1, 203–225.
[8] P. Daskalopoulos, M. del Pino, and N. Sesum, Type II ancient compact solutions to the Yamabe flow, J. Reine Angew. Math. (2015), . | DOI
[9] R. Donninger, M. Huang, J. Krieger, and W. Schlag, Exotic blowup solutions for the focusing wave equation in , Michigan Math. J. 63 (2014), no. 3, 451–501.
[10] R. Donninger and J. Krieger, Nonscattering solutions and blowup at infinity for the critical wave equation, Math. Ann. 357 (2013), no. 1, 89–163.
[11] T. Duyckaerts, J. Jia, C. E. Kenig, and F. Merle, Soliton resolution along a sequence of times for the focusing energy critical wave equation, Preprint, , 2016. | arXiv
[12] T. Duyckaerts, C. E. Kenig, and F. Merle, Classification of the radial solutions of the focusing, energy-critical wave equation, Camb. J. Math. 1 (2013), no. 1, 75–144.
[13] T. Duyckaerts and F. Merle, Dynamics of threshold solutions for energy-critical wave equation, Int. Math. Res. Pap. IMRP (2008).
[14] W. Eckhaus and P. C. Schuur, The emergence of solitons of the Korteweg-de Vries equation from arbitrary initial conditions, Math. Methods Appl. Sci. 5 (1983), 97–116.
[15] J. Ginibre, A. Soffer, and G. Velo, The global Cauchy problem for the critical nonlinear wave equation, J. Funct. Anal. 110 (1992), 96–130.
[16] M. Hillairet and P. Raphaël, Smooth type II blow up solutions to the four dimensional energy critical wave equation, Anal. PDE 5 (2012), no. 4, 777–829.
[17] J. Jendrej, Construction of type II blow-up solutions for the energy-critical wave equation in dimension 5, Preprint,, 2015. | arXiv
[18] —, Nonexistence of radial two-bubbles with opposite signs for the energy-critical wave equation, Preprint , 2015. | arXiv
[19] —, Construction of two-bubble solutions for energy-critical wave equations, Preprint, , 2016. | arXiv
[20] H. Jia and C. E. Kenig, Asymptotic decomposition for semilinear wave and equivariant wave map equations, Preprint, , 2015. | arXiv
[21] K. Jörgens, Das Anfangswertproblem im Großen für eine Klasse nichtlinearer Wellengleichungen, Math. Zeitschr. 77 (1961), 295–308.
[22] J. B. Keller, On solutions of nonlinear wave equations, Comm. Math. Pure Appl. 10 (1957), 523–530.
[23] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math. 201 (2008), no. 2, 147–212.
[24] J. Krieger and W. Schlag, Full range of blow up exponents for the quintic wave equation in three dimensions, J. Math Pures Appl. 101 (2014), no. 6, 873–900.
[25] J. Krieger, W. Schlag, and D. Tataru, Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math. 171 (2008), no. 3, 543–615.
[26] —, Slow blow-up solutions for the critical focusing semilinear wave equation, Duke Math. J. 147 (2009), no. 1, 1–53.
[27] Y. Martel, Asymptotic -soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math. 127 (2005), no. 5, 1103–1140.
[28] Y. Martel and F. Merle, On the nonexistence of pure multi-solitons for the quartic gKdV equation, Int. Math. Res. Not. (2013), . | DOI
[29] —, Construction of multi-solitons for the energy-critical wave equation in dimension 5, ARMA (2016), 1–48, . | DOI
[30] Y. Martel, F. Merle, and P. Raphaël, Blow up for the critical gKdV equation III: exotic regimes, Ann. Sc. Norm. Super. Pisa Cl. Sci. XIV (2015), 575–631.
[31] Y. Martel and P. Raphaël, Strongly interacting blow up bubbles for the mass critical NLS, Preprint, , 2015. | arXiv
[32] F. Merle, Construction of solutions with exactly blow-up points for the Schrödinger equation with critical nonlinearity, Commun. Math. Phys. 129 (1990), no. 2, 223–240.
[33] C. Ortoleva and G. Perelman, Nondispersive vanishing and blow up at infinity for the energy critical nonlinear Schrödinger equation in , Algebra i Analiz 25 (2013), no. 2, 162–192.
[34] L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math. 22 (1975), no. 3, 273–303.
[35] G. Perelman, Blow up dynamics for equivariant critical Schrödinger maps, Commun. Math. Phys. 330 (2014), no. 1, 69–105.
[36] P. Raphaël and J. Szeftel, Existence and uniqueness of minimal mass blow up solutions to an inhomogeneous -critical NLS, J. Amer. Math. Soc. 24 (2011), no. 2, 471–546.
[37] I. Rodnianski and P. Raphaël, Stable blow up dynamics for critical corotational wave maps and the equivariant Yang Mills problem, Publ. Math. Inst. Hautes Études Sci. 115 (2012), 1–122.
[38] I. Rodnianski and J. Sterbenz, On the formation of singularities in the critical -model, Ann. of Math. 172 (2010), no. 1, 187–242.
[39] J. Shatah and M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices 7 (1994), 303–309.
[40] J. Shatah and A. Tahvildar-Zadeh, On the Cauchy problem for equivariant wave maps, Comm. Pure Appl. Math. 47 (1994), no. 5, 719–754.
[41] M. Struwe, Equivariant wave maps in two space dimensions, Comm. Pure Appl. Math. 56 (2003), no. 7, 815–823.
[42] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), no. 4, 353–372.
[43] P. Topping, An example of a nontrivial bubble tree in the harmonic map heat flow, Harmonic Morphisms, Harmonic Maps and Related Topics, Chapman and Hall/CRC, 1999.
[44] —, Repulsion and quantization in almost-harmonic maps, and asymptotics of the harmonic map flow, Ann. of Math. 159 (2004), no. 2, 465–534.
Cité par Sources :