Earnshaw’s Theorem in Electrostatics and a Conditional Converse to Dirichlet’s Theorem
Séminaire Laurent Schwartz — EDP et applications (2013-2014), Exposé no. 12, 10 p.

For the dynamics x '' =- x V(x), an equilibrium point x ̲ are always unstable when on a neighborhood of x ̲ the non constant V satisfies P(x,)V=0 for a real second order elliptic P. The proof uses a result of Kozlov [6].

DOI : 10.5802/slsedp.56
Rauch, Jeffrey 1

1 Department of Mathematics University of Michigan Ann Arbor 48109 MI USA
@article{SLSEDP_2013-2014____A12_0,
     author = {Rauch, Jeffrey},
     title = {Earnshaw{\textquoteright}s {Theorem} in {Electrostatics} and a {Conditional} {Converse} to {Dirichlet{\textquoteright}s} {Theorem}},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:12},
     pages = {1--10},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2013-2014},
     doi = {10.5802/slsedp.56},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/slsedp.56/}
}
TY  - JOUR
AU  - Rauch, Jeffrey
TI  - Earnshaw’s Theorem in Electrostatics and a Conditional Converse to Dirichlet’s Theorem
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:12
PY  - 2013-2014
SP  - 1
EP  - 10
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/articles/10.5802/slsedp.56/
DO  - 10.5802/slsedp.56
LA  - en
ID  - SLSEDP_2013-2014____A12_0
ER  - 
%0 Journal Article
%A Rauch, Jeffrey
%T Earnshaw’s Theorem in Electrostatics and a Conditional Converse to Dirichlet’s Theorem
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:12
%D 2013-2014
%P 1-10
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://www.numdam.org/articles/10.5802/slsedp.56/
%R 10.5802/slsedp.56
%G en
%F SLSEDP_2013-2014____A12_0
Rauch, Jeffrey. Earnshaw’s Theorem in Electrostatics and a Conditional Converse to Dirichlet’s Theorem. Séminaire Laurent Schwartz — EDP et applications (2013-2014), Exposé no. 12, 10 p. doi : 10.5802/slsedp.56. http://www.numdam.org/articles/10.5802/slsedp.56/

[1] G. Allaire and J. Rauch, In preparation.

[2] V. Arnold, Mathematical developments arising from Hilbert problems, Proceedings of Symposia in Pure Mathematics (F. Browder, Ed.), Amer. Math. Soc., Providence, R.I., 1976. | MR

[3] S. Earnshaw, On the nature of the molecular forces which regulate the constitution of the luminferous ether, Trans. Cambridge Phil. Soc. 7, (1842) 97-112.

[4] P. Hagedorn, Die umkehrung der stabilitätssätze von Lagrange-Dirichlet und Routh, Arch. Rational Mech. Anal. 42 (1971) 281-316. | MR | Zbl

[5] V. Kozlov, Asymptotic solutions of equations of classical mechanics, J. Appl. Math. Mech. 46 (1982) 454-457. | MR | Zbl

[6] V. Kozlov, Asymptotic motions and the inversion of the Lagrange-Dirichlet theorem, J. Appl. Math. Mech. 50 (1987) 719-725. | MR | Zbl

[7] M. Laloy and K. Peiffer, On the instability of equilibrium when the potential has a non-strict local minimum, Arch. Rational Mech. Anal. 78 (1982) 213-222. | MR | Zbl

[8] J. C. Maxwell, A Treatise on Electricity and Magnetism Vol. I., (From the 1891 ed.) Dover Publ. 1954. | MR | Zbl

[9] P. Negrini, On the inversion of the Lagrange-Dirichlet Theorem, Resenhas 2 (1995), no. 1, 83-114. | MR | Zbl

[10] S. Taliaferro, Stability for two dimensional analytic potentials, J. Differential Equations 35 (1980) 248-265. | MR | Zbl

[11] S. Taliaferro, Instability of an equilibrium in a potential field. Arch. Rational Mech. Anal. 109 no.2 (1990) 183-194. | MR | Zbl

Cité par Sources :