Global Poissonian behavior of the eigenvalues and localization centers of random operators in the localized phase
Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exposé no. 9, 12 p.

Dans cette note, nous passerons en revue les résultats récents sur l’ergodicité asymptotique des valeurs propres et des centres de localisation des opérateurs aléatoires dans la phase localisées, obtenus dans [12]. Ces résultats généralisent ceux de [10] en prenant en compte les centres de localisation. Plus précisémenet, on démontre que, pour une classe générale d’opérateurs aléatoires, dans la région de localisation, les couples constitués des valeurs propres “dépliées” et du centre de localisation associé sont asymptotiquement ergodiques. On démontre également un résultat similaire lorsqu’on se restreint à de petits intervalles d’énergie.

In the present note, we review some recent results on the spectral statistics of random operators in the localized phase obtained in [12]. For a general class of random operators, we show that the family of the unfolded eigenvalues in the localization region considered jointly with the associated localization centers is asymptotically ergodic. This can be considered as a generalization of [10]. The benefit of the present approach is that one can vary the scaling of the unfolded eigenvalues covariantly with that of the localization centers. The convergence result then holds for all the scales that are asymptotically larger than the localization scale. We also provide a similar result that is localized in energy. Full proofs of the results presented here will be published elsewhere ([12]).

DOI : 10.5802/slsedp.7
Klopp, Frédéric 1

1 LAGA, U.M.R. 7539 C.N.R.S Institut Galilée Université Paris-Nord 99 Avenue J.-B. Clément F-93430 Villetaneuse France
@article{SLSEDP_2011-2012____A9_0,
     author = {Klopp, Fr\'ed\'eric},
     title = {Global {Poissonian} behavior of the eigenvalues and localization centers of random operators in the localized phase},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:9},
     pages = {1--12},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2011-2012},
     doi = {10.5802/slsedp.7},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/slsedp.7/}
}
TY  - JOUR
AU  - Klopp, Frédéric
TI  - Global Poissonian behavior of the eigenvalues and localization centers of random operators in the localized phase
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:9
PY  - 2011-2012
SP  - 1
EP  - 12
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/articles/10.5802/slsedp.7/
DO  - 10.5802/slsedp.7
LA  - en
ID  - SLSEDP_2011-2012____A9_0
ER  - 
%0 Journal Article
%A Klopp, Frédéric
%T Global Poissonian behavior of the eigenvalues and localization centers of random operators in the localized phase
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:9
%D 2011-2012
%P 1-12
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://www.numdam.org/articles/10.5802/slsedp.7/
%R 10.5802/slsedp.7
%G en
%F SLSEDP_2011-2012____A9_0
Klopp, Frédéric. Global Poissonian behavior of the eigenvalues and localization centers of random operators in the localized phase. Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exposé no. 9, 12 p. doi : 10.5802/slsedp.7. http://www.numdam.org/articles/10.5802/slsedp.7/

[1] Michael Aizenman, Jeffrey H. Schenker, Roland M. Friedrich, and Dirk Hundertmark. Finite-volume fractional-moment criteria for Anderson localization. Comm. Math. Phys., 224(1):219–253, 2001. Dedicated to Joel L. Lebowitz. | MR | Zbl

[2] Jean-Michel Combes, François Germinet, and Abel Klein. Generalized eigenvalue-counting estimates for the Anderson model. J. Stat. Phys., 135(2):201–216, 2009. | MR | Zbl

[3] Jean-Michel Combes, François Germinet, and Abel Klein. Poisson statistics for eigenvalues of continuum random Schrödinger operators. Anal. PDE, 3(1):49–80, 2010. | MR | Zbl

[4] François Germinet and Abel Klein. A characterization of the Anderson metal-insulator transport transition. Duke Math. J., 124(2):309–350, 2004. | MR | Zbl

[5] Francois Germinet and Abel Klein. New characterizations of the region of complete localization for random Schrödinger operators. J. Stat. Phys., 122(1):73–94, 2006. | MR | Zbl

[6] François Germinet and Frédéric Klopp. Improved Wegner and Minami type estimates and applications to the spectral statistics of random anderson models in the localized regime. in progress.

[7] François Germinet and Frédéric Klopp. Spectral statistics for random Schrödinger operators in the localized regime. ArXiv , 2010. | arXiv

[8] Werner Kirsch. An invitation to random Schrödinger operators. In Random Schrödinger operators, volume 25 of Panor. Synthèses, pages 1–119. Soc. Math. France, Paris, 2008. With an appendix by Frédéric Klopp. | MR | Zbl

[9] Werner Kirsch and Bernd Metzger. The integrated density of states for random Schrödinger operators. In Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, volume 76 of Proc. Sympos. Pure Math., pages 649–696. Amer. Math. Soc., Providence, RI, 2007. | MR | Zbl

[10] Frédéric Klopp. Asymptotic ergodicity of the eigenvalues of random operators in the localized phase. To appear in Prob. Theor. Relat. Fields ArXiv: , 2010. | arXiv

[11] Frédéric Klopp. Inverse tunneling estimates and applications to the study of spectral statistics of random operators on the real line. ArXiv: , 2011. | arXiv | MR

[12] Frédéric Klopp. Universal joint asymptotic ergodicity of the eigenvalues and localization centers of random operators in the localized phase. In preparation, 2012.

[13] Nariyuki Minami. Theory of point processes and some basic notions in energy level statistics. In Probability and mathematical physics, volume 42 of CRM Proc. Lecture Notes, pages 353–398. Amer. Math. Soc., Providence, RI, 2007. | MR | Zbl

[14] Leonid Pastur and Alexander Figotin. Spectra of random and almost-periodic operators, volume 297 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1992. | MR | Zbl

[15] Peter Stollmann. Caught by disorder, volume 20 of Progress in Mathematical Physics. Birkhäuser Boston Inc., Boston, MA, 2001. Bound states in random media. | MR | Zbl

[16] Ivan Veselić. Existence and regularity properties of the integrated density of states of random Schrödinger operators, volume 1917 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2008. | MR | Zbl

Cité par Sources :