Global in Time Stability of Steady Shocks in Nozzles
Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exposé no. 2, 11 p.

We prove global dynamical stability of steady transonic shock solutions in divergent quasi-one-dimensional nozzles. One of the key improvements compared with previous results is that we assume neither the smallness of the slope of the nozzle nor the weakness of the shock strength. A key ingredient of the proof are the derivation a exponentially decaying energy estimates for a linearized problem.

DOI : 10.5802/slsedp.2
Rauch, Jeffrey 1 ; Xie, Chunjing 1 ; Xin, Zhouping 2

1 Department of Mathematics University of Michigan 530 Church Street Ann Arbor, MI 48109 USA
2 The Institute of Mathematical Sciences and department of mathematics The Chinese University of Hong Kong Hong Kong
@article{SLSEDP_2011-2012____A2_0,
     author = {Rauch, Jeffrey and Xie, Chunjing and Xin, Zhouping},
     title = {Global in {Time} {Stability} of {Steady} {Shocks} in {Nozzles}},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:2},
     pages = {1--11},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2011-2012},
     doi = {10.5802/slsedp.2},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/slsedp.2/}
}
TY  - JOUR
AU  - Rauch, Jeffrey
AU  - Xie, Chunjing
AU  - Xin, Zhouping
TI  - Global in Time Stability of Steady Shocks in Nozzles
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:2
PY  - 2011-2012
SP  - 1
EP  - 11
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/articles/10.5802/slsedp.2/
DO  - 10.5802/slsedp.2
LA  - en
ID  - SLSEDP_2011-2012____A2_0
ER  - 
%0 Journal Article
%A Rauch, Jeffrey
%A Xie, Chunjing
%A Xin, Zhouping
%T Global in Time Stability of Steady Shocks in Nozzles
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:2
%D 2011-2012
%P 1-11
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://www.numdam.org/articles/10.5802/slsedp.2/
%R 10.5802/slsedp.2
%G en
%F SLSEDP_2011-2012____A2_0
Rauch, Jeffrey; Xie, Chunjing; Xin, Zhouping. Global in Time Stability of Steady Shocks in Nozzles. Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exposé no. 2, 11 p. doi : 10.5802/slsedp.2. http://www.numdam.org/articles/10.5802/slsedp.2/

[1] Courant, R. and Friedrichs, K.O., Supersonic Flow and Shock Waves, Springer-Verlag, 1948. | MR | Zbl

[2] Elling, V., Regular reflection in self-similar potential flow and the sonic criterion. Commun. Math. Anal. 8 (2010), no. 2, 22-69. | MR

[3] Elling, V., Instability of strong regular reflection and counterexamples to the detachment criterion. SIAM J. Appl. Math. 70 (2009), no. 4, 1330-1340. | MR

[4] Elling, V., Counterexamples to the sonic criterion. Arch. Ration. Mech. Anal. 194 (2009), no. 3, 987-1010. | MR

[5] P. Embid, J. Goodman, and A. Majda,Multiple steady states for 1-D transonic flow, SIAM J. Sci. Statist. Comput. 5 (1984), no. 1, 21–41. | MR | Zbl

[6] L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998. | MR | Zbl

[7] S.-Y. Ha, L 1 stability for systems of conservation laws with a nonresonant moving source, SIAM J. Math. Anal. 33 (2001), no. 2, 411–439. | MR | Zbl

[8] S.-Y. Ha and T. Yang, L 1 stability for systems of hyperbolic conservation laws with a resonant moving source, SIAM J. Math. Anal. 34 (2003), no. 5, 1226–1251 | MR | Zbl

[9] T. Kato, Perturbation theory for linear operators, Reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995. | MR | Zbl

[10] P. D. Lax, Functional analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2002. | MR | Zbl

[11] Ta Tsien Li and Wen Ci Yu, Boundary value problems for quasilinear hyperbolic systems, Duke University Mathematics Series, V. Duke University, Mathematics Department, Durham, NC, 1985. | MR | Zbl

[12] Wen-Ching Lien, Hyperbolic conservation laws with a moving source, Comm. Pure Appl. Math. 52 (1999), no. 9, 1075–1098. | MR | Zbl

[13] Tai-Ping Liu, Transonic gas flow in a duct of varying area, Arch. Rational Mech. Anal. 80 (1982), no. 1, 1–18. | MR | Zbl

[14] Tai-Ping Liu, Nonlinear stability and instability of transonic flows through a nozzle, Comm. Math. Phys. 83 (1982), no. 2, 243–260. | MR | Zbl

[15] Tai-Ping Liu, Nonlinear resonance for quasilinear hyperbolic equation, J. Math. Phys. 28 (1987), no. 11, 2593–2602. | MR | Zbl

[16] Tao Luo, Jeffrey Rauch, Chunjing Xie, and Zhouping Xin, Stability of transonic shock solutions for Euler-Poisson equations, Archive Rational Anal. Mech., to appear, arXiv:1008.0378.

[17] Andrew Majda, The existence of multidimensional shock fronts, Mem. Amer. Math. Soc. 43 (1983), no. 281. | MR | Zbl

[18] Guy Métivier, Stability of multidimensional shocks, Advances in the theory of shock waves, 25–103, Progr. Nonlinear Differential Equations Appl., 47, BirkhŠuser Boston, Boston, MA, 2001. | MR | Zbl

[19] Jeffrey Rauch, Qualitative behavior of dissipative wave equations on bounded domains, Arch. Rational Mech. Anal. 62 (1976), no. 1, 77–85. | MR | Zbl

[20] Jeffrey Rauch and Frank Massey, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc. 189 (1974), 303–318. | MR | Zbl

[21] Jeffrey Rauch and Michael Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J. 24 (1974), 79–86. | MR | Zbl

[22] Zhouping Xin and Huicheng Yin, The transonic shock in a nozzle, 2-D and 3-D complete Euler systems, J. Differential Equations 245 (2008), no. 4, 1014–1085. | MR | Zbl

Cité par Sources :