@article{RSMUP_1998__99__219_0, author = {Amadori, Debora and Colombo, Rinaldo M.}, title = {Viscosity solutions and standard {Riemann} semigroup for conservation laws with boundary}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {219--245}, publisher = {Seminario Matematico of the University of Padua}, volume = {99}, year = {1998}, mrnumber = {1636611}, zbl = {0910.35078}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1998__99__219_0/} }
TY - JOUR AU - Amadori, Debora AU - Colombo, Rinaldo M. TI - Viscosity solutions and standard Riemann semigroup for conservation laws with boundary JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1998 SP - 219 EP - 245 VL - 99 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1998__99__219_0/ LA - en ID - RSMUP_1998__99__219_0 ER -
%0 Journal Article %A Amadori, Debora %A Colombo, Rinaldo M. %T Viscosity solutions and standard Riemann semigroup for conservation laws with boundary %J Rendiconti del Seminario Matematico della Università di Padova %D 1998 %P 219-245 %V 99 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_1998__99__219_0/ %G en %F RSMUP_1998__99__219_0
Amadori, Debora; Colombo, Rinaldo M. Viscosity solutions and standard Riemann semigroup for conservation laws with boundary. Rendiconti del Seminario Matematico della Università di Padova, Tome 99 (1998), pp. 219-245. http://www.numdam.org/item/RSMUP_1998__99__219_0/
[1] Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA, 4 (1997), pp. 1-42. | MR | Zbl
,[2] R. M. COLOMBO, Continuous dependence for 2 x 2 conservation laws with boundary, J. Differential Equations, 138 (1997), no. 2, pp. 229-266. | MR | Zbl
-[3] Global solutions of systems of conservation laws by wave-front tracking, J. Math. Anal. Appl., 170 (1992), pp. 414-432. | MR | Zbl
,[4] Lecture notes on systems of conservation laws, S.I.S.S.A., Trieste (1994).
,[5] The unique limit of the Glimm scheme, Arch. Rational Mech. Anal., 130 (1995), pp. 205-230. | MR | Zbl
,[6] The semigroup approach to systems of conservation laws, Matematica Contemporanea, 10 (1996), pp. 21-74. | MR | Zbl
,[7] The semigroup generated by 2 x 2 systems of conservation laws, Arch. Rational Mech. Anal., 133 (1996), pp. 1-75. | MR | Zbl
- ,[8] Unique solutions of 2 x 2 conservation laws with large data, Indiana Univ. Math. J., 44 (1995), pp. 677-725. | MR | Zbl
- ,[9] Well-posedness of the Cauchy problem for n x n systems of conservation laws, Preprint S.I.S.S.A. 1996.
- - ,[10] Uniqueness and continuous dependence for 2 × 2 conservation laws, Ph.D. Thesis, S.I.S.S.A. (1995).
,[11] Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 71 (1988), pp. 93-122. | MR | Zbl
- ,[12] Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math., 18 (1965), pp. 697-715. | MR | Zbl
,[13] Initial Boundary Value Problems for Hyperbolic Systems of Conservation Laws, Ph. D. Thesis, California University (1982).
,[14] Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 10 (1957), pp. 537-567. | MR | Zbl
,[15] Méthode de Glimm et problème mixte, Ann. Inst. Henri Poincaré, 10, no. 4 (1993), pp. 423-443. | Numdam | MR | Zbl
,[16] Equations, Springer-Verlag, New York (1983). | MR | Zbl
and