About the cumulative idle time in multiphase queues
RAIRO - Operations Research - Recherche Opérationnelle, Tome 39 (2005) no. 2, pp. 75-85.

The paper is designated to the analysis of queueing systems, arising in the network theory and communications theory (called multiphase queueing systems, tandem queues or series of queueing systems). Also we note that multiphase queueing systems can be useful for modelling practical multi-stage service systems in a variety of disciplines, especially on manufacturing (assembly lines), computer networking (packet switch structures), and in telecommunications (e.g. cellular mobile networks), etc. This research presents heavy traffic limit theorems for the cumulative idle time in multiphase queues. In this work, functional limit theorems are proved for the values of important probability characteristics of the queueing system (a cumulative idle time of a customer).

DOI : 10.1051/ro:2005008
Mots clés : queueing systems, multiphase queues, functional limit theorems, heavy traffic, a cumulative idle time of a customer
@article{RO_2005__39_2_75_0,
     author = {Minkevi\v{c}ius, Saulius and Stei\v{s}\={u}nas, Stasys},
     title = {About the cumulative idle time in multiphase queues},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {75--85},
     publisher = {EDP-Sciences},
     volume = {39},
     number = {2},
     year = {2005},
     doi = {10.1051/ro:2005008},
     mrnumber = {2181792},
     zbl = {1092.90017},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro:2005008/}
}
TY  - JOUR
AU  - Minkevičius, Saulius
AU  - Steišūnas, Stasys
TI  - About the cumulative idle time in multiphase queues
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2005
SP  - 75
EP  - 85
VL  - 39
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ro:2005008/
DO  - 10.1051/ro:2005008
LA  - en
ID  - RO_2005__39_2_75_0
ER  - 
%0 Journal Article
%A Minkevičius, Saulius
%A Steišūnas, Stasys
%T About the cumulative idle time in multiphase queues
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2005
%P 75-85
%V 39
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ro:2005008/
%R 10.1051/ro:2005008
%G en
%F RO_2005__39_2_75_0
Minkevičius, Saulius; Steišūnas, Stasys. About the cumulative idle time in multiphase queues. RAIRO - Operations Research - Recherche Opérationnelle, Tome 39 (2005) no. 2, pp. 75-85. doi : 10.1051/ro:2005008. http://www.numdam.org/articles/10.1051/ro:2005008/

[1] C. Adams, E. Gelenbe and J. Vicard, An experimentally validated model of the paging drum. Acta Inform. 11 (1979) 103-117. | Zbl

[2] F. Baccelli, A. Borovkov and J. Mairesse, Asymptotic results on infinite tandem queueing networks. Probab. Theory Related Fields 118 (2000) 365-405. | Zbl

[3] P. Billingsley, Convergence of Probability Measures. New York, Wiley (1968). | MR | Zbl

[4] E. Gelenbe, On approximate computer system models. J. ACM 22 (1975) 261-269. | Zbl

[5] E. Gelenbe, Probabilistic models of computer systems. II. Diffusion approximations, waiting times and batch arrivals. Acta Inform. 12 (1979) 285-303. | Zbl

[6] E. Gelenbe, X. Mang and Y. Feng, Diffusion cell loss estimates for ATM with multiclass bursty traffic. Computer Systems - Science and Engineering. Special Issue: ATM Networks. 11 (1996) 325-333.

[7] E. Gelenbe, X. Mang and R. Onvural, Diffusion based Call Admission Control in ATM. Performance Evaluation 27/28 (1996) 411-436, also in Proceedings of the IFIP WG 7.3/ACM-SIGMETRICS Performance'96 Conference. | Zbl

[8] E. Gelenbe and I. Mitrani, Analysis and Synthesis of Computer Systems. New York-London, Academic Press (1980). | MR | Zbl

[9] E. Gelenbe and R.R. Muntz, Probabilistic models of computer systems. I. Exact results. Acta Inform. 7 (1976) 35-60. | Zbl

[10] G. Gelenbe and G. Pujolle, The behaviour of a single queue in a general queueing network. Acta Inform. 7 (1976/77) 123-136. | Zbl

[11] D. Iglehart, Weak convergence in queueing theory. Adv. Appl. Probab. 5 (1973) 570-594. | Zbl

[12] D. Iglehart and W. Whitt, Multiple channel queues in heavy traffic. I. Adv. Appl. Probab. No. 2 (1970) 150-177. | Zbl

[13] F. Karpelevich and A. Kreinin, Heavy Traffic Limits for Multiphase Queues. American Mathematical Society, Providence, Rhode Island (1994). | MR | Zbl

[14] O. Kella, Concavity and reflected Levy process. J. Appl. Probab. 29 (1992) 209-215. | Zbl

[15] H. Kobayashi, Application of the diffusion approximation to queueing networks: Parts I and II. J. ACM 21 (1974) 316-328, 459-469. | Zbl

[16] H. Kobayashi and Q. Ren, A diffusion approximation analysis of an ATM statistical multiplexer with multiple state solutions: Part I: Equilibrium state solutions. Proc. ICC'93 (1993) 1047-1053.

[17] X. Mang, ATM Network Performance Predictions and Control, Ph.D. Dissertation. Duke: Electrical and Computer Engineering Department of Duke University (1996).

[18] X. Mang and E. Gelenbe, Call admission control in ATM using diffusion model. Proc. Globecom'96, London, UK (1996).

[19] P. Milch and M. Waggoner, A random walk approach to a shutdown queueing system. SIAM J. Appl. Math. 19 (1970) 103-115. | Zbl

[20] S. Minkevičius, Weak convergence in multiphase queues. Lithuanian Math. J. 26 (1986) 717-722 (in Russian).

[21] S. Minkevičius, On the full idle time in multiphase queues. Lithuanian Math. J. (to appear).

[22] M. Pike, Some numerical results for the queueing system D/Ek/1. J. R. Statist. Soc. Ser. B. 25 (1963) 477-488. | Zbl

[23] N. Prabhu, Stochastic Storage Processes. New York-Heidelberg-Berlin, Springer-Verlag (1968). | MR | Zbl

[24] A. Puhalskii, Moderate deviations for queues in critical loading. Queue. Syst. Theor. Appl. 31 (1999) 359-392. | Zbl

[25] M. Reiser, H. Kobayashi, Accuracy of the diffusion approximation for some queueing systems. IBM J. Res. Dev. 18 (1974) 110-124. | Zbl

[26] M. Ridel, Conditions for stationarity in a single server queueing system. Zastos. Mat. 15 (1976) 17-24. | Zbl

[27] L. Takacs, Occupation time problems in the theory of queues, in Lecture Notes in Economics and Mathematical Systems. Berlin-Heidelberg-New York, Springer-Verlag 98 (1974) 91-131. | Zbl

[28] W. Whitt, Limits for cumulative input processes to queues. Probab. Engrg. Inform. Sci. 14 (2000) 123-150. | Zbl

Cité par Sources :