In the problem of signal detection in gaussian white noise we show asymptotic minimaxity of kernel-based tests. The test statistics equal -norms of kernel estimates. The sets of alternatives are essentially nonparametric and are defined as the sets of all signals such that the -norms of signal smoothed by the kernels exceed some constants . The constant depends on the power of noise and as . Similar statements are proved also if an additional information on a signal smoothness is given. By theorems on asymptotic equivalence of statistical experiments these results are extended to the problems of testing nonparametric hypotheses on density and regression. The exact asymptotically minimax lower bounds of type II error probabilities are pointed out for all these settings. Similar results are also obtained for the problems of testing parametric hypotheses versus nonparametric sets of alternatives.
Mots clés : nonparametric hypothesis testing, kernel-based tests, goodness-of-fit tests, efficiency, asymptotic minimaxity, kernel estimator
@article{PS_2003__7__279_0, author = {Ermakov, Michael}, title = {On asymptotic minimaxity of kernel-based tests}, journal = {ESAIM: Probability and Statistics}, pages = {279--312}, publisher = {EDP-Sciences}, volume = {7}, year = {2003}, doi = {10.1051/ps:2003013}, mrnumber = {1987790}, zbl = {1013.62050}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2003013/} }
Ermakov, Michael. On asymptotic minimaxity of kernel-based tests. ESAIM: Probability and Statistics, Tome 7 (2003), pp. 279-312. doi : 10.1051/ps:2003013. http://www.numdam.org/articles/10.1051/ps:2003013/
[1] On Some Global Measures of Deviation of Density Function Estimates. Ann. Statist. 1 (1973) 1071-1095. | MR | Zbl
and ,[2] Efficient and Adaptive Estimation for the Semiparametric Models. John Hopkins University Press, Baltimore (1993). | MR | Zbl
, , and ,[3] Martingale Central Limit Theorems. Ann. Math. Statist. 42 (1971) 59-66. | MR | Zbl
,[4] Asymptotic Equivalence of Nonparametric Regression and White Noise. Ann. Statist. 24 (1996) 2384-2398. | MR | Zbl
and ,[5] On the Minimax Detection of an Inaccurately Known Signal in a White Gaussian Noise. Theory Probab. Appl. 24 (1979) 107-119. | MR | Zbl
,[6] Statistical Decision Rules and Optimal Inference. Moskow, Nauka (1972). | MR
,[7] Minimax Detection of a Signal in Gaussian White Noise. Theory Probab. Appl. 35 (1990) 667-679. | MR | Zbl
,[8] On Asymptotic Minimaxity of Rank Tests. Statist. Probab. Lett. 15 (1992) 191-196. | MR | Zbl
,[9] Minimax Nonparametric Testing Hypotheses on a Density Function. Theory Probab. Appl. 39 (1994) 396-416. | MR | Zbl
,[10] Asymptotic Minimaxity of Tests of Kolmogorov and Omega-squared Types. Theory Probab. Appl. 40 (1995) 54-67. | MR | Zbl
,[11] Asymptotic Minimaxity of Chi-squared Tests. Theory Probab. Appl. 42 (1997) 668-695. | MR | Zbl
,[12] On Distinquishability of Two Nonparametric Sets of Hypotheses. Statist. Probab. Lett. 48 (2000) 275-282. | MR | Zbl
,[13] Testing Goodness of Fit of a Parametric Density Function by Kernel Method. Econometric Theory 10 (1994) 316-356. | MR
,[14] Minimax Rates for Nonparametric Specification Testing in Regression Models, Working Paper. Toulouse University of Social Sciences, Toulouse, France (1999).
and ,[15] Zbl
and Wei-Mion Huang, The Power and Optimal Kernel of the Bickel-Rosenblatt Test for Goodness of Fit. Ann. Statist. 19 (1991) 999-1009. |[16] Integrated Square Error Properties of Kernel Estimators of Regression Function. Ann. Statist. 12 (1984) 241-260. | MR | Zbl
,[17] Central Limit Theorem for Integrated Square Error of Multivariate Nonparametric Density Estimators. J. Multivar. Anal. 14 (1984) 1-16. | MR | Zbl
,[18] Applied Nonparametric Regression. Cambridge University Press, Cambridge (1989). | MR | Zbl
,[19] Nonparametric Smoothing and Lack-of-fit Tests. Springer-Verlag, New York (1997). | MR | Zbl
,[20] Adaptive, Rate-optimal Test of Parametric Model against a Nonparametric Alternative, Vol. 542, Preprint. Weierstrass-Institute of Applied Analysis and Stochastic, Berlin (1999).
and ,[21] Minimax Detection of Signal in -metrics. Z. Nauchn. Sem. (POMI) 184 (1990) 152-168. | MR | Zbl
,[22] Minimax Detection of Signals for Besov Balls and Bodies. Probl. Inform. Transm. 34 (1998) 56-68. | MR | Zbl
and ,[23] Nonparametric Goodness-of-Fit Testing under Gaussian Model. Springer-Verlag, New York, Lecture Notes in Statist. 169. | MR | Zbl
and ,[24] On a Global Measure of Deviation for an Estimate of the Regression Line. Theor. Probab. Appl. 22 (1977) 858-868. | MR | Zbl
,[25] Minimax Nonparametric Hypothesis Testing: The Case of an Inhomogeneous Alternative. Bernoulli 5 (1999) 333-358. | MR | Zbl
and ,[26] Gaussian Random Functions. TViMS Kiev (1995). | MR | Zbl
,[27] Asymptotic Equivalence of Density Estimation and Gaussian White Noise. Ann. Statist. 24 (1996) 2399-2430. | MR | Zbl
,[28] Asymptotic Methods in Theory of Gaussian Proceses and Fields. Moskow University, Moskow (1988).
,[29] Smooth Tests of Goodness of Fit. Oxford University Press, New York (1989). | MR | Zbl
and ,[30] The One-sided Barrier Problem for Gaussian Noise. Bell System Tech. J. 41 (1962) 463-501. | MR
,[31] Adaptive Hypothesis Testing using Wavelets. Ann. Statist. 24 (1996) 2477-2498. | MR | Zbl
,[32] Efficient Nonparametric Testing and Estimation, in Third Berkeley Symp. Math. Statist. and Probab, Vol. 1. Univ. California Press, Berkeley (1956) 187-195. | MR | Zbl
,[33] Nonparametric Model Checks for Regression. Ann. Statist. 25 (1997) 613-641. | MR | Zbl
,Cité par Sources :