Numerical precision for differential inclusions with uniqueness
ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 3, pp. 427-460.

In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is 1/2 in general and 1 when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl’s rheological model, our estimates in maximum norm do not depend on spatial dimension.

DOI : 10.1051/m2an:2002020
Classification : 34A60, 34G25, 34K28, 47H05, 47J35, 65L70
Mots clés : differential inclusions, existence and uniqueness, multivalued maximal monotone operator, sub-differential, numerical analysis, implicit Euler numerical scheme, frictions laws
@article{M2AN_2002__36_3_427_0,
     author = {Bastien, J\'er\^ome and Schatzman, Michelle},
     title = {Numerical precision for differential inclusions with uniqueness},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {427--460},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {3},
     year = {2002},
     doi = {10.1051/m2an:2002020},
     mrnumber = {1918939},
     zbl = {1036.34012},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an:2002020/}
}
TY  - JOUR
AU  - Bastien, Jérôme
AU  - Schatzman, Michelle
TI  - Numerical precision for differential inclusions with uniqueness
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2002
SP  - 427
EP  - 460
VL  - 36
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2002020/
DO  - 10.1051/m2an:2002020
LA  - en
ID  - M2AN_2002__36_3_427_0
ER  - 
%0 Journal Article
%A Bastien, Jérôme
%A Schatzman, Michelle
%T Numerical precision for differential inclusions with uniqueness
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2002
%P 427-460
%V 36
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an:2002020/
%R 10.1051/m2an:2002020
%G en
%F M2AN_2002__36_3_427_0
Bastien, Jérôme; Schatzman, Michelle. Numerical precision for differential inclusions with uniqueness. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 3, pp. 427-460. doi : 10.1051/m2an:2002020. http://www.numdam.org/articles/10.1051/m2an:2002020/

[1] J. Bastien, M. Schatzman and C.-H. Lamarque, Study of some rheological models with a finite number of degrees of freedom. Eur. J. Mech. A Solids 19 (2000) 277-307. | Zbl

[2] J. Bastien, M. Schatzman and C.-H. Lamarque, Study of an elastoplastic model with an infinite number of internal degrees of freedom. Eur. J. Mech. A Solids 21 (2002) 199-222. | Zbl

[3] J. Bastien, Étude théorique et numérique d'inclusions différentielles maximales monotones. Applications à des modèles élastoplastiques. Ph.D. Thesis, Université Lyon I (2000). number: 96-2000.

[4] H. Brezis, Perturbations non linéaires d'opérateurs maximaux monotones. C. R. Acad. Sci. Paris Sér. A-B 269 (1969) 566-569. | Zbl

[5] H. Brezis, Problèmes unilatéraux. J. Math. Pures Appl. 51 (1972) 1-168. | Zbl

[6] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam (1973). North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). | MR | Zbl

[7] M.G. Crandall and L.C. Evans, On the relation of the operator /s+/τ to evolution governed by accretive operators. Israel J. Math. 21 (1975) 261-278. | Zbl

[8] R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. 8. Masson, Paris (1988). Évolution: semi-groupe, variationnel., Reprint of the edition of 1985. | MR | Zbl

[9] A.L. Dontchev and E.M. Farkhi, Error estimates for discretized differential inclusion. Computing 41 (1989) 349-358. | Zbl

[10] A.L. Dontchev and F. Lempio, Difference methods for differential inclusions: a survey. SIAM Rev. 34 (1992) 263-294. | Zbl

[11] M.A. Freedman, A random walk for the solution sought: remark on the difference scheme approach to nonlinear semigroups and evolution operators. Semigroup Forum 36 (1987) 117-126. | Zbl

[12] U. Hornung, ADI-methods for nonlinear variational inequalities of evolution. Iterative solution of nonlinear systems of equations. Lecture Notes in Math. 953, Springer, Berlin-New York (1982) 138-148. | Zbl

[13] A.G. Kartsatos, The existence of a method of lines for evolution equations involving maximal monotone operators and locally defined perturbations. Panamer. Math. J. 1 (1991) 17-27. | Zbl

[14] F. Lempio and V. Veliov, Discrete approximations of differential inclusions. Bayreuth. Math. Schr. 54 (1998) 149-232. | Zbl

[15] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1. Dunod, Paris (1968). | MR | Zbl

[16] G. Lippold, Error estimates for the implicit Euler approximation of an evolution inequality. Nonlinear Anal. 15 (1990) 1077-1089. | Zbl

[17] V. Veliov, Second-order discrete approximation to linear differential inclusions. SIAM J. Numer. Anal. 29 (1992) 439-451. | Zbl

[18] E. Zeidler, Nonlinear functional analysis and its applications. II/B. Springer-Verlag, New York (1990). Nonlinear monotone operators, Translated from german by the author and Leo F. Boron. | MR | Zbl

Cité par Sources :