A local large sieve inequality for cusp forms
Journal de théorie des nombres de Bordeaux, Tome 26 (2014) no. 3, pp. 757-787.

Nous démontrons une inégalité du type grand crible pour les formes de Maass et les formes cuspidales holomorphes de niveau au moins un et de poids entier ou demi-entier dans un petit intervalle.

We prove a large sieve type inequality for Maass forms and holomorphic cusp forms with level greater or equal to one and of integral or half-integral weight in short interval.

DOI : 10.5802/jtnb.887
Classification : 11F11, 11F30, 11F37
Lam, Jonathan Wing Chung 1

1 Department of Mathematics The Ohio State University 100 Math Tower, 231 West 18th Avenue Columbus, OH 43210-1174
@article{JTNB_2014__26_3_757_0,
     author = {Lam, Jonathan Wing Chung},
     title = {A local large sieve inequality for cusp forms},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {757--787},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {26},
     number = {3},
     year = {2014},
     doi = {10.5802/jtnb.887},
     mrnumber = {3320500},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.887/}
}
TY  - JOUR
AU  - Lam, Jonathan Wing Chung
TI  - A local large sieve inequality for cusp forms
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2014
SP  - 757
EP  - 787
VL  - 26
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - http://www.numdam.org/articles/10.5802/jtnb.887/
DO  - 10.5802/jtnb.887
LA  - en
ID  - JTNB_2014__26_3_757_0
ER  - 
%0 Journal Article
%A Lam, Jonathan Wing Chung
%T A local large sieve inequality for cusp forms
%J Journal de théorie des nombres de Bordeaux
%D 2014
%P 757-787
%V 26
%N 3
%I Société Arithmétique de Bordeaux
%U http://www.numdam.org/articles/10.5802/jtnb.887/
%R 10.5802/jtnb.887
%G en
%F JTNB_2014__26_3_757_0
Lam, Jonathan Wing Chung. A local large sieve inequality for cusp forms. Journal de théorie des nombres de Bordeaux, Tome 26 (2014) no. 3, pp. 757-787. doi : 10.5802/jtnb.887. http://www.numdam.org/articles/10.5802/jtnb.887/

[1] J. Cogdell and P. Michel, On the complex moments of symmetric power L-functions at s=1 , Int. Math. Res. Not. 31 , (2004), 1561–1617. | MR | Zbl

[2] J.M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier cofficients of cusp forms, Invent. Math. 70, (1982), 219–288. | MR | Zbl

[3] W. Duke, J.B. Frielander and H. Iwaniec, Bounds for Automorphic L-functions II, Invent. Math. 115, (1994), 219–239. | MR | Zbl

[4] H. Iwaniec, Mean values for Fourier coefficients of cusp forms and sums of Kloosterman sums, Journées Arithmetiqués de Exeter, (1980), 306–321. | MR | Zbl

[5] H. Iwaniec, Spectral Methods of Automorphic Forms, Graduate Studies in Mathematics, Amer. Math. Soc., Providence, RI, (2002). | MR | Zbl

[6] H. Iwaniec and P. Michel, The second moment of the symmetric square L-functions, Ann. Acad. Sci. Fenn. Math. 2, (2001), 465–482. | MR | Zbl

[7] H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematics Society Colloquium Publications, Amer. Math. Soc., Providence, RI, (2004). | MR | Zbl

[8] H. Iwaniec, W. Luo and P. Sarnak, P., Low lying zeros of families of L-functions, I.H.E.S. Publ. Math., 91, (2000), 55–131. | MR | Zbl

[9] M. Jutila, On spectral large sieve inequalities, Functiones et Approximatio 28, (2000), 7–18. | MR | Zbl

[10] M. Jutila and Y. Motohashi, Uniform bound for Hecke L-functions, Acta. Math.195, (2005), 61–115. | MR | Zbl

[11] N.N. Lebedev, Special functions and their applications, Dover Books on Mathematics, (1972). | MR | Zbl

[12] W. Luo, Spectral means-values of automorphic L-functions at special points, Analytic Number Theory, Proc. of a Conference in honor of Heini Halberstam, 70, (1982), 219–288. | Zbl

[13] W. Luo and P. Sarnak, Mass equidistribution for Hecke eigenforms, Comm. Pure Appl. Math., 56, (2003), 874–891. | MR | Zbl

[14] Y. Motohashi, Spectral Theory of the Riemann Zeta-Function, Merchant Books, (2008). | Zbl

[15] H.E. Richert, Lectures on Sieve Methods, Tata Institute of Fundamental Research, Bombay, (1976). | Zbl

[16] G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, 127, (1997). | MR | Zbl

[17] Q. Zhang, A local large sieve inequality for the Maass cusp form. preprint.

Cité par Sources :