Nous donnons des formules asymptotiques pour le nombre d’extensions cycliques quartiques d’un corps de nombres général.
In this paper, we give asymptotic formulas for the number of cyclic quartic extensions of a number field.
@article{JTNB_2005__17_2_475_0, author = {Cohen, Henri and Diaz y Diaz, Francisco and Olivier, Michel}, title = {Counting cyclic quartic extensions of a number field}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {475--510}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {2}, year = {2005}, doi = {10.5802/jtnb.503}, zbl = {1090.11068}, mrnumber = {2211303}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.503/} }
TY - JOUR AU - Cohen, Henri AU - Diaz y Diaz, Francisco AU - Olivier, Michel TI - Counting cyclic quartic extensions of a number field JO - Journal de théorie des nombres de Bordeaux PY - 2005 SP - 475 EP - 510 VL - 17 IS - 2 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.503/ DO - 10.5802/jtnb.503 LA - en ID - JTNB_2005__17_2_475_0 ER -
%0 Journal Article %A Cohen, Henri %A Diaz y Diaz, Francisco %A Olivier, Michel %T Counting cyclic quartic extensions of a number field %J Journal de théorie des nombres de Bordeaux %D 2005 %P 475-510 %V 17 %N 2 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.503/ %R 10.5802/jtnb.503 %G en %F JTNB_2005__17_2_475_0
Cohen, Henri; Diaz y Diaz, Francisco; Olivier, Michel. Counting cyclic quartic extensions of a number field. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 2, pp. 475-510. doi : 10.5802/jtnb.503. http://www.numdam.org/articles/10.5802/jtnb.503/
[1] S. Bosca, Comparing orders of Selmer groups. Jour. Théo. Nomb. Bordeaux 17 (2005), 467–473. | Numdam | MR | Zbl
[2] H. Cohen, Advanced Topics in Computational Number Theory, Graduate Texts in Math. 193, Springer-Verlag, 2000. | MR | Zbl
[3] H. Cohen, High precision computation of Hardy–Littlewood constants, preprint available on the author’s web page.
[4] H. Cohen, F. Diaz y Diaz, M. Olivier, On the density of discriminants of cyclic extensions of prime degree, J. reine angew. Math. 550 (2002), 169–209. | MR | Zbl
[5] H. Cohen, F. Diaz y Diaz, M. Olivier, Cyclotomic extensions of number fields, Indag. Math. (N.S.) 14 (2003), 183–196. | MR | Zbl
[6] H. Cohen, F. Diaz y Diaz, M. Olivier, Counting biquadratic extensions of a number field, preprint.
[7] H. Cohen, F. Diaz y Diaz, M. Olivier, Counting discriminants of number fields, submitted.
[8] B. Datskovsky, D. J. Wright, Density of discriminants of cubic extensions, J. reine angew. Math. 386 (1988), 116–138. | MR | Zbl
[9] J. Klüners, A counter-example to Malle’s conjecture on the asymptotics of discriminants, C. R. Acad. Sci. Paris 340 (2005), 411–414. | Zbl
[10] S. Mäki, On the density of abelian number fields, Thesis, Helsinki, 1985. | MR | Zbl
[11] S. Mäki, The conductor density of abelian number fields, J. London Math. Soc. (2) 47 (1993), 18–30. | MR | Zbl
[12] G. Malle, On the distribution of Galois groups, J. Number Th. 92 (2002), 315–329. | MR | Zbl
[13] G. Malle, On the distribution of Galois groups II, Exp. Math. 13 (2004), 129–135. | MR | Zbl
[14] D. J. Wright, Distribution of discriminants of Abelian extensions, Proc. London Math. Soc. (3) 58 (1989), 17–50. | MR | Zbl
Cité par Sources :