Soit un morphisme (qui n’est pas constant) d’une courbe vers une variété abélienne , tous définis sur un corps de nombres . Supposons que ne satisfait pas le principe de Hasse. Nous donnons des conditions suffisantes pour que l’obstruction de Brauer-Manin soit la seule obstruction au principe de Hasse. Ces conditions suffisantes sont légèrement plus fortes que de supposer que et sont finis.
Let be a non-constant morphism from a curve to an abelian variety , all defined over a number field . Suppose that is a counterexample to the Hasse principle. We give sufficient conditions for the failure of the Hasse principle on to be accounted for by the Brauer–Manin obstruction. These sufficiency conditions are slightly stronger than assuming that and are finite.
@article{JTNB_2004__16_3_773_0, author = {Siksek, Samir}, title = {The {Brauer{\textendash}Manin} obstruction for curves having split {Jacobians}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {773--777}, publisher = {Universit\'e Bordeaux 1}, volume = {16}, number = {3}, year = {2004}, doi = {10.5802/jtnb.469}, zbl = {1076.14033}, mrnumber = {2144966}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.469/} }
TY - JOUR AU - Siksek, Samir TI - The Brauer–Manin obstruction for curves having split Jacobians JO - Journal de théorie des nombres de Bordeaux PY - 2004 SP - 773 EP - 777 VL - 16 IS - 3 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.469/ DO - 10.5802/jtnb.469 LA - en ID - JTNB_2004__16_3_773_0 ER -
%0 Journal Article %A Siksek, Samir %T The Brauer–Manin obstruction for curves having split Jacobians %J Journal de théorie des nombres de Bordeaux %D 2004 %P 773-777 %V 16 %N 3 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.469/ %R 10.5802/jtnb.469 %G en %F JTNB_2004__16_3_773_0
Siksek, Samir. The Brauer–Manin obstruction for curves having split Jacobians. Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 3, pp. 773-777. doi : 10.5802/jtnb.469. http://www.numdam.org/articles/10.5802/jtnb.469/
[1] J.W.S. Cassels, E.V. Flynn, Prolegomena to a middlebrow arithmetic of curves of genus . L.M.S. lecture notes series 230, Cambridge University Press, 1996. | MR | Zbl
[2] J.W.S. Cassels, A. Fröhlich, Algebraic number theory. Academic press, New York, 1967. | MR | Zbl
[3] D. Coray, C. Manoil, On large Picard groups and the Hasse Principle for curves and K3 surfaces. Acta Arith. LXXVI.2 (1996), 165–189. | MR | Zbl
[4] J.E. Cremona, Algorithms for modular elliptic curves. second edition, Cambridge University Press, 1996. | MR | Zbl
[5] V.A. Kolyvagin, Euler systems. I The Grothendieck Festschrift, Vol. II, 435–483, Progr. Math. 87, Birkhäuser, Boston, 1990. | MR | Zbl
[6] V. Scharaschkin, The Brauer-Manin obstruction for curves. To appear.
[7] A.N. Skorobogatov, Torsors and rational points. Cambridge Tracts in Mathematics 144, Cambridge University Press, 2001. | MR | Zbl
Cité par Sources :