Pour un exemple typique de corps de valuation discrète complet de type II au sens de [12], nous déterminons les quotients gradués pour tout . Dans l’appendice, nous décrivons les -groupes de Milnor d’un certain anneau local à l’aide de modules de différentielles, qui sont liés à la théorie de la cohomologie syntomique.
For a typical example of a complete discrete valuation field of type II in the sense of [12], we determine the graded quotients for all . In the Appendix, we describe the Milnor -groups of a certain local ring by using differential modules, which are related to the theory of syntomic cohomology.
@article{JTNB_2004__16_2_377_0, author = {Kurihara, Masato}, title = {On the structure of {Milnor} $K$-groups of certain complete discrete valuation fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {377--401}, publisher = {Universit\'e Bordeaux 1}, volume = {16}, number = {2}, year = {2004}, doi = {10.5802/jtnb.452}, zbl = {1079.11058}, mrnumber = {2143560}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.452/} }
TY - JOUR AU - Kurihara, Masato TI - On the structure of Milnor $K$-groups of certain complete discrete valuation fields JO - Journal de théorie des nombres de Bordeaux PY - 2004 SP - 377 EP - 401 VL - 16 IS - 2 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.452/ DO - 10.5802/jtnb.452 LA - en ID - JTNB_2004__16_2_377_0 ER -
%0 Journal Article %A Kurihara, Masato %T On the structure of Milnor $K$-groups of certain complete discrete valuation fields %J Journal de théorie des nombres de Bordeaux %D 2004 %P 377-401 %V 16 %N 2 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.452/ %R 10.5802/jtnb.452 %G en %F JTNB_2004__16_2_377_0
Kurihara, Masato. On the structure of Milnor $K$-groups of certain complete discrete valuation fields. Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 2, pp. 377-401. doi : 10.5802/jtnb.452. http://www.numdam.org/articles/10.5802/jtnb.452/
[1] S. Bloch, Algebraic -theory and crystalline cohomology. Publ. Math. IHES 47 (1977), 187–268. | Numdam | MR | Zbl
[2] S. Bloch, K. Kato, -adic etale cohomology. Publ. Math. IHES 63 (1986), 107–152. | Numdam | MR | Zbl
[3] M. Demazure, Lectures on -divisible groups. Lecture Notes in Math. 302, Springer (1972). | MR | Zbl
[4] J.-M. Fontaine, W. Messing, -adic periods and -adic étale cohomology. Contemporary Math. 67 (1987), 179–207. | MR | Zbl
[5] J. Graham,Continuous symbols on fields of formal power series, Algebraic K-theory II. Lecture Notes in Math. 342, Springer-Verlag (1973), 474–486. | MR | Zbl
[6] L. Illusie, Complexes de de Rham Witt et cohomologie crystalline. Ann. Sci. Éc. Norm. Super. série t. 12 (1979), 501–661. | Numdam | MR | Zbl
[7] K. Kato, Residue homomorphisms in Milnor -theory, in Galois groups and their representations. Adv. St. in Pure Math. 2 (1983), 153–172. | MR | Zbl
[8] K. Kato, A generalization of local class field theory by using -groups I. J. Fac. Sci. Univ. Tokyo 26 (1979), 303–376, II, ibid 27 (1980), 603–683, III, ibid 29 (1982), 31–43. | MR | Zbl
[9] K. Kato, On -adic vanishing cycles (applications of ideas of Fontaine-Messing). Adv. St. in Pure Math. 10 (1987), 207–251. | MR | Zbl
[10] K. Kato, The explicit reciprocity law and the cohomology of Fontaine-Messing. Bull. Soc. Math. France 119 (1991), 397–441. | Numdam | MR | Zbl
[11] M. Kolster, of non-commutative local rings. J. Algebra 95 (1985), 173–200. | Zbl
[12] M. Kurihara, On two types of complete discrete valuation fields. Compos. Math. 63 (1987), 237–257. | Numdam | MR | Zbl
[13] M. Kurihara, A note on -adic etale cohomology. Proc. Japan Acad. Ser. A 63 (1987), 275–278. | MR | Zbl
[14] M. Kurihara, Abelian extensions of an absolutely unramified local field with general residue field. Invent. math. 93 (1988), 451–480. | MR | Zbl
[15] M. Kurihara, The exponential homomorphisms for the Milnor -groups and an explicit reciprocity law. J. reine angew. Math. 498 (1998), 201–221. | MR | Zbl
[16] J. Nakamura, On the structures of the Milnor -groups of some complete discrete valuation fields. -Theory 19 (2000), 269–309. | MR | Zbl
[17] J. Nakamura, On the Milnor -groups of complete discrete valuation fields. Doc. Math. 5 (2000), 151–200 (electronic). | MR | Zbl
[18] A.N. Parshin, Class field theory and algebraic -theory. Uspekhi Mat. Nauk. 30 no 1 (1975), 253–254, (English transl. in Russian Math. Surveys). | Zbl
[19] J.-P. Serre, Corps locaux ( édition), Hermann, Paris, (1968). | MR | Zbl
[20] T. Tsuji, Syntomic complexes and -adic vanishing cycles. J. reine angew. Math. 472 (1996), 69–138. | MR | Zbl
[21] T. Tsuji, -adic étale cohomology and crystalline cohomology in the semi-stable reduction case. Invent. math. 137 (1999), 233–411. | MR | Zbl
[22] W. Van der Kallen, The of rings with many units. Ann. Sci. Éc. Norm. Sup. série t. 10 (1977), 473–515. | Numdam | MR | Zbl
[23] S.V. Vostokov, Explicit form of the law of reciprocity. Izv. Acad. Nauk. SSSR 13 (1979), 557–588. | Zbl
[24] I. Zhukov, Milnor and topological -groups of multidimensional complete fields. St. Petersburg Math. J. 9 (1998), 69–105. | MR | Zbl
Cité par Sources :