A new proof of Maxfield’s theorem is given, using automata and results from Symbolic Dynamics. These techniques permit to prove that points that are near normality to base
@article{JTNB_1993__5_2_303_0, author = {Blanchard, Fran\c{c}ois}, title = {Non literal tranducers and some problems of normality}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {303--321}, publisher = {Universit\'e Bordeaux I}, volume = {5}, number = {2}, year = {1993}, mrnumber = {1265907}, zbl = {0817.11037}, language = {en}, url = {https://www.numdam.org/item/JTNB_1993__5_2_303_0/} }
TY - JOUR AU - Blanchard, François TI - Non literal tranducers and some problems of normality JO - Journal de théorie des nombres de Bordeaux PY - 1993 SP - 303 EP - 321 VL - 5 IS - 2 PB - Université Bordeaux I UR - https://www.numdam.org/item/JTNB_1993__5_2_303_0/ LA - en ID - JTNB_1993__5_2_303_0 ER -
Blanchard, François. Non literal tranducers and some problems of normality. Journal de théorie des nombres de Bordeaux, Tome 5 (1993) no. 2, pp. 303-321. https://www.numdam.org/item/JTNB_1993__5_2_303_0/
[A] The entropy of a derived automorphism, Amer. Math. Soc. Transl. 49 (1965), 162-166. | Zbl
,[BP] Theory of codes, London, Academic Press, 1985. | MR | Zbl
, ,[Be] Développements en base θ et répartition modulo 1 de la suite (xθn), Bull. Soc. math. Fr. 114 (1986), 271-324. | Numdam | Zbl
,[BIP] Relèvements d'une mesure ergodique par un codage, Z. Wahrsheinlichkeist. v. Gebiete 54 (1980), 303-311. | MR | Zbl
, ,[BIDT] Generic sequences, transducers and multiplication of normal numbers, Israel J. Math. 80 (1992), 257-287. | MR | Zbl
, , ,[BrL] Predictions with automata, Symbolic Dynamics and its Applications, AMS, providence, RI, P. Walters ed., Contemporary Math 135, 1992. | MR | Zbl
, ,[C] On a paper of Niven and Zuckerman, Pacific J. Math. 3 (1953), 555-557. | MR | Zbl
,[D]
, Private communication.[F1] Representations of numbers and finite automata, Math. Systems Theory 25 (1992), 37-60. | MR | Zbl
,[F2] How to write integers in non-integer base, Lecture Notes in Computer Science (Proceedings of Latin '92) 583, 154-164. | MR
,[F3] Finite Beta-expansions, Ergod. Th. & Dynam. Syst. 12 (1992), 713-723. | MR | Zbl
, ,[K] Subsequences of normal sequences, Israel J. Math. 16 (1973), 121-149. | MR | Zbl
,[M] Normal k-tuples, Pacif. J. Math. 3 (1953), 189-196. | MR | Zbl
,[PS] Induced flows, Trans. Amer. Math. Soc. 177 (1973), 375-390. | MR | Zbl
, ,