Non literal tranducers and some problems of normality
Journal de théorie des nombres de Bordeaux, Tome 5 (1993) no. 2, pp. 303-321.

A new proof of Maxfield’s theorem is given, using automata and results from Symbolic Dynamics. These techniques permit to prove that points that are near normality to base pk (resp. p) are also near normality to base p (resp. pk), and to study genericity preservation for non Lebesgue measures when going from one base to the other. Finally, similar results are proved to bases the golden mean and its square.

@article{JTNB_1993__5_2_303_0,
     author = {Blanchard, Fran\c{c}ois},
     title = {Non literal tranducers and some problems of normality},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {303--321},
     publisher = {Universit\'e Bordeaux I},
     volume = {5},
     number = {2},
     year = {1993},
     mrnumber = {1265907},
     zbl = {0817.11037},
     language = {en},
     url = {https://www.numdam.org/item/JTNB_1993__5_2_303_0/}
}
TY  - JOUR
AU  - Blanchard, François
TI  - Non literal tranducers and some problems of normality
JO  - Journal de théorie des nombres de Bordeaux
PY  - 1993
SP  - 303
EP  - 321
VL  - 5
IS  - 2
PB  - Université Bordeaux I
UR  - https://www.numdam.org/item/JTNB_1993__5_2_303_0/
LA  - en
ID  - JTNB_1993__5_2_303_0
ER  - 
%0 Journal Article
%A Blanchard, François
%T Non literal tranducers and some problems of normality
%J Journal de théorie des nombres de Bordeaux
%D 1993
%P 303-321
%V 5
%N 2
%I Université Bordeaux I
%U https://www.numdam.org/item/JTNB_1993__5_2_303_0/
%G en
%F JTNB_1993__5_2_303_0
Blanchard, François. Non literal tranducers and some problems of normality. Journal de théorie des nombres de Bordeaux, Tome 5 (1993) no. 2, pp. 303-321. https://www.numdam.org/item/JTNB_1993__5_2_303_0/

[A] L.M. Abramov, The entropy of a derived automorphism, Amer. Math. Soc. Transl. 49 (1965), 162-166. | Zbl

[BP] J. Berstel, D. Perrin, Theory of codes, London, Academic Press, 1985. | MR | Zbl

[Be] A. Bertrand-Mathis, Développements en base θ et répartition modulo 1 de la suite (xθn), Bull. Soc. math. Fr. 114 (1986), 271-324. | Numdam | Zbl

[BIP] F. Blanchard, D. Perrin, Relèvements d'une mesure ergodique par un codage, Z. Wahrsheinlichkeist. v. Gebiete 54 (1980), 303-311. | MR | Zbl

[BIDT] F. Blanchard, J.-M. Dumont, A. Thomas, Generic sequences, transducers and multiplication of normal numbers, Israel J. Math. 80 (1992), 257-287. | MR | Zbl

[BrL] A. Broglio, P. Liardet, Predictions with automata, Symbolic Dynamics and its Applications, AMS, providence, RI, P. Walters ed., Contemporary Math 135, 1992. | MR | Zbl

[C] J.W.S. Cassels, On a paper of Niven and Zuckerman, Pacific J. Math. 3 (1953), 555-557. | MR | Zbl

[D] J.-M. Dumont, Private communication.

[F1] C. Frougny, Representations of numbers and finite automata, Math. Systems Theory 25 (1992), 37-60. | MR | Zbl

[F2] C. Frougny, How to write integers in non-integer base, Lecture Notes in Computer Science (Proceedings of Latin '92) 583, 154-164. | MR

[F3] C. Frougny, B. Solomyak, Finite Beta-expansions, Ergod. Th. & Dynam. Syst. 12 (1992), 713-723. | MR | Zbl

[K] T. Kamae, Subsequences of normal sequences, Israel J. Math. 16 (1973), 121-149. | MR | Zbl

[M] J.E. Maxfield, Normal k-tuples, Pacif. J. Math. 3 (1953), 189-196. | MR | Zbl

[PS] K. Petersen, L. Shapiro, Induced flows, Trans. Amer. Math. Soc. 177 (1973), 375-390. | MR | Zbl