The aim of this paper is to study the threshold behavior for the satisfiability property of a random -XOR-CNF formula or equivalently for the consistency of a random Boolean linear system with variables per equation. For we show the existence of a sharp threshold for the satisfiability of a random -XOR-CNF formula, whereas there are smooth thresholds for and .
Mots clés : threshold phenomenon, satisfiability, phase transition, random boolean linear systems
@article{ITA_2003__37_2_127_0, author = {Creignou, Nadia and Daud\'e, Herv\'e}, title = {Smooth and sharp thresholds for random ${k}${-XOR-CNF} satisfiability}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {127--147}, publisher = {EDP-Sciences}, volume = {37}, number = {2}, year = {2003}, doi = {10.1051/ita:2003014}, mrnumber = {2015688}, zbl = {1112.68390}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ita:2003014/} }
TY - JOUR AU - Creignou, Nadia AU - Daudé, Hervé TI - Smooth and sharp thresholds for random ${k}$-XOR-CNF satisfiability JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2003 SP - 127 EP - 147 VL - 37 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ita:2003014/ DO - 10.1051/ita:2003014 LA - en ID - ITA_2003__37_2_127_0 ER -
%0 Journal Article %A Creignou, Nadia %A Daudé, Hervé %T Smooth and sharp thresholds for random ${k}$-XOR-CNF satisfiability %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2003 %P 127-147 %V 37 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ita:2003014/ %R 10.1051/ita:2003014 %G en %F ITA_2003__37_2_127_0
Creignou, Nadia; Daudé, Hervé. Smooth and sharp thresholds for random ${k}$-XOR-CNF satisfiability. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 2, pp. 127-147. doi : 10.1051/ita:2003014. http://www.numdam.org/articles/10.1051/ita:2003014/
[1] Minimal non 2-colorable hypergraphs and minimal unsatisfiable formulas. J. Combin. Theory Ser. A 43 (1986). | MR | Zbl
and ,[2] A linear-time algorithm for testing the truth of certain quantified Boolean formulas. Inform. Process. Lett. 8 (1979) 121-123. | MR | Zbl
, and ,[3] Random graphs. Academic Press (1985). | MR | Zbl
,[4] Almost all graphs with 1.44n edges are 3-colorable. Random Struct. Algorithms 2 (1991) 11-28. | MR | Zbl
,[5] Mick gets some (the odds are on his side), in Proc. of the 33rd Annual Symposium on Foundations of Computer Science. IEEE (1992) 620-627. | Zbl
and ,[6] Satisfiability threshold for random XOR-CNF formulæ. Discrete Appl. Math. 96-97 (1999) 41-53. | MR | Zbl
and ,[7] Typical random 3-SAT formulae and the satisfiability threshold, in Proc. of the 11th ACM-SIAM Symposium on Discrete Algorithms, SODA'2000 (2000) 124-126. | Zbl
, and ,[8] On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 7 (1960) 17-61. | MR | Zbl
and , and an Appendix by J. Bourgain, Sharp thresholds of graph properties, and the -sat problem. J. Amer. Math. Soc. 12 (1999) 1017-1054. |[10] Analysis of two simple heuristics on a random instance of k-SAT. J. Algorithms 20 (1996) 312-355. | MR | Zbl
and ,[11] The SAT phase transition, in Proc. of the 11th European Conference on Artificial Intelligence (1994) 105-109.
and ,[12] A threshold for unsatisfiability. J. Comput. System Sci. 53 (1996) 469-486. | MR | Zbl
,[13] Percolation. Springer Verlag (1989). | Zbl
,[14] Poisson convergence and Poisson processes with applications to random graphs. Stochastic Process. Appl. 26 (1987) 1-30. | MR | Zbl
,[15] Critical behavior in the satisfiability of random Boolean expressions. Science 264 (1994) 1297-1301. | MR
and ,[16] Random graphs and systems of linear equations in finite fields. Random Struct. Algorithms 5 (1995) 425-436. | MR | Zbl
,[17] Random graphs. Cambridge University Press (1999). | MR | Zbl
,[18] A threshold effect for systems of random equations of a special form. Discrete Math. Appl. 2 (1992) 563-570. | MR | Zbl
and ,[19] On the limit distribution of the number of solutions of a random system of linear equations in the class of boolean functions. Theory Probab. Appl. 12 (1967) 47-56. | MR | Zbl
,[20] Hard and easy distributions of SAT problems, in Proc. of the 10th National Conference on Artificial Intelligence (1992) 459-465.
, and ,[21] Statistical mechanics of the random K-sat model. Phys. Rev. E 56 (1997) 1357. | MR
and ,[22] The complexity of satisfiability problems, in Proceedings 10th STOC, San Diego (CA, USA). Association for Computing Machinery (1978) 216-226. | MR
,[23] On the limit distribution of the number of cycles in a random graph. J. Appl. Probab. 25 (1988) 359-376. | MR | Zbl
,Cité par Sources :