@article{CTGDC_2007__48_1_3_0, author = {Ganter, Nora}, title = {Smash product of $E(1)$-local spectra at an odd prime}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, pages = {3--54}, publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS}, volume = {48}, number = {1}, year = {2007}, mrnumber = {2317294}, zbl = {1126.18007}, language = {en}, url = {http://www.numdam.org/item/CTGDC_2007__48_1_3_0/} }
TY - JOUR AU - Ganter, Nora TI - Smash product of $E(1)$-local spectra at an odd prime JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques PY - 2007 SP - 3 EP - 54 VL - 48 IS - 1 PB - Dunod éditeur, publié avec le concours du CNRS UR - http://www.numdam.org/item/CTGDC_2007__48_1_3_0/ LA - en ID - CTGDC_2007__48_1_3_0 ER -
%0 Journal Article %A Ganter, Nora %T Smash product of $E(1)$-local spectra at an odd prime %J Cahiers de Topologie et Géométrie Différentielle Catégoriques %D 2007 %P 3-54 %V 48 %N 1 %I Dunod éditeur, publié avec le concours du CNRS %U http://www.numdam.org/item/CTGDC_2007__48_1_3_0/ %G en %F CTGDC_2007__48_1_3_0
Ganter, Nora. Smash product of $E(1)$-local spectra at an odd prime. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 48 (2007) no. 1, pp. 3-54. http://www.numdam.org/item/CTGDC_2007__48_1_3_0/
[Bou85] On the homotopy theory of K-local spectra at an odd prime. Amer. J. Math., 107(4):895-932, 1985. | MR | Zbl
.[CH02] Quillen model structures for relative homological algebra. Math. Proc. Cambridge Philos. Soc., 133(2):261-293, 2002. | MR | Zbl
and .[DHKS04] Homotopy limit functors on model categories and homotopical categories, volume 113 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2004. | MR | Zbl
, , , and .[EKMM97] Rings, modules, and algebras in stable homotopy theory, volume 47 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997. With an appendix by M. Cole. | MR | Zbl
, , , and .[Fra96] Uniqueness theorems for certain triangulated categories possessing an adams spectral sequence. K Theory Archives 139, 1996.
.[Fra01] On the Brown representability theorem for triangulated categories. Topology, 40(4):667-680, 2001. | MR | Zbl
.[GM96] Methods of homological algebra. Springer-Verlag, Berlin, 1996. Translated from the 1988 Russian original. | MR | Zbl
and .[Hov99] Model categories, volume 63 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1999. | MR | Zbl
.[Hov01] Model category structures on chain complexes of sheaves. Trans. Amer. Math. Soc., 353(6):2441-2457 (electronic), 2001. | MR | Zbl
.[Hov04] Homotopy theory of comodules over a Hopf algebroid. In Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, volume 346 of Contemp. Math., pages 261-304. Amer. Math. Soc., Providence, RI, 2004. | MR | Zbl
.[HS98] Nilpotence and stable homotopy theory. II. Ann. of Math. (2), 148(1):1-49, 1998. | MR | Zbl
and .[HSS00] Symmetric spectra. J. Amer. Math. Soc., 13(1):149-208, 2000. | MR | Zbl
, , and .[Kra05] Cohomological quotients and smashing localizations. Amer. J. Math., 127(6):1191-1246, 2005. | MR | Zbl
.[ML98] Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998. | MR | Zbl
.[Rav92] Nilpotence and periodicity in stable homotopy theory, volume 128 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1992. Appendix C by Jeff Smith. | MR | Zbl
.[Ree74] Homotopy theory of model categories. Preprint, www-math.mit.edu/~psh/ # Reedy, 1974.
.[Sch01a] S-modules and symmetric spectra. Math. Ann., 319(3):517-532, 2001. | MR | Zbl
.[Sch01b] The stable homotopy category has a unique model at the prime 2. Adv. Math., 164(1):24-40, 2001. | MR | Zbl
.[SS00] Algebras and modules in monoidal model categories. Proc. London Math. Soc. (3), 80(2):491-511, 2000. | MR | Zbl
and .[SS03] Stable model categories are categories of modules. Topology, 42(1):103-153, 2003. | MR | Zbl
and .[W0198] Classifying modules over K-theory spectra. J. Pure Appl. Algebra, 124(1-3):289-323, 1998. | MR | Zbl
.