@article{CM_1990__75_3_299_0, author = {Dijkstra, Jan J.}, title = {Characterizing {Hilbert} space topology in terms of strong negligibility}, journal = {Compositio Mathematica}, pages = {299--306}, publisher = {Kluwer Academic Publishers}, volume = {75}, number = {3}, year = {1990}, mrnumber = {1070416}, zbl = {0724.57014}, language = {en}, url = {http://www.numdam.org/item/CM_1990__75_3_299_0/} }
TY - JOUR AU - Dijkstra, Jan J. TI - Characterizing Hilbert space topology in terms of strong negligibility JO - Compositio Mathematica PY - 1990 SP - 299 EP - 306 VL - 75 IS - 3 PB - Kluwer Academic Publishers UR - http://www.numdam.org/item/CM_1990__75_3_299_0/ LA - en ID - CM_1990__75_3_299_0 ER -
Dijkstra, Jan J. Characterizing Hilbert space topology in terms of strong negligibility. Compositio Mathematica, Tome 75 (1990) no. 3, pp. 299-306. http://www.numdam.org/item/CM_1990__75_3_299_0/
1 Strongly negligible sets in Fréchet manifolds. Bull. Amer. Math. Soc. 75, 64-67 (1969). | MR | Zbl
,2 Selected topics in infinite dimensional topology. Warsaw: PWN 1975. | MR | Zbl
, ,3 Characterization of Hilbert space manifolds revisited. Topology Appl. 24, 53-69 (1986). | MR | Zbl
, , , ,4 Negligible subsets of infinite-dimensional Fréchet manifolds. Proc. Amer. Math. Soc. 23, 668-675 (1969). | MR | Zbl
,5 Strong negligibility of σ-compacta does not characterize Hilbert space. Pacific J. Math. 127, 19-30 (1987). | Zbl
,6 Strongly negligible sets outside Fréchet manifolds. Bull. London Math. Soc. 19, 371-377 (1987). | MR | Zbl
,7 Pseudo-boundaries and pseudo-interiors in Euclidean spaces and topological manifolds. Trans. Amer. Math. Soc. 194, 141-165 (1974). | MR | Zbl
, ,8 Algebraic Topology. New York: McGraw-Hill, 1966. | MR | Zbl
,9 Absolute retracts as factors of normed linear spaces. Fund. Math. 86, 53-67 (1974). | MR | Zbl
,10 Concerning locally homotopy negligible sets and characterization of l2manifolds. Fund. Math. 101, 93-110 (1978). | MR | Zbl
,11 Characterizing Hilbert space topology. Fund. Math. 111, 247-262 (1981). | MR | Zbl
,