@article{CM_1987__63_1_41_0, author = {O'Brian, N. R.}, title = {Geometry of twisting cochains}, journal = {Compositio Mathematica}, pages = {41--62}, publisher = {Martinus Nijhoff Publishers}, volume = {63}, number = {1}, year = {1987}, mrnumber = {906378}, zbl = {0641.32021}, language = {en}, url = {http://www.numdam.org/item/CM_1987__63_1_41_0/} }
O'Brian, N. R. Geometry of twisting cochains. Compositio Mathematica, Tome 63 (1987) no. 1, pp. 41-62. http://www.numdam.org/item/CM_1987__63_1_41_0/
1 Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc. 85 (1957) 181-207. | MR | Zbl
:2 On the zeros of meromorphic vector fields. Essays on topology and related topics, memoires dédiés à Georges de Rham. Springer, Berlin, Heidelberg, New York (1970) 29-47. | MR | Zbl
and :3 A computation of the equivariant index of the Dirac operator. Bull. Soc. Math. France 113 (1985) 305-345. | Numdam | MR | Zbl
and :4 The Atiyah-Singer Theorems: a probabilistic approach. I. The index theorem. J. Functional Analysis 57 (1984) 56-99. | MR | Zbl
:5 Pseudodifferential operators on supermanifolds and the Atiyah-Singer Index theorem. Commun. Math. Phys. 92 (1983) 163-178. | MR | Zbl
:6 Geometric Asymptotics. A.M.S. Mathematical Surveys 14 (1977). | MR | Zbl
and :7 The trace map and characteristic classes for coherent sheaves. Am. J. Math. 103 (1981) 225-252. | MR | Zbl
, and :8 Hirzebruch-Riemann-Roch for coherent sheaves. Am. J. Math. 103 (1981) 253-271. | MR | Zbl
, and :9 A Grothendieck-Riemann-Roch formula for maps of complex manifolds. Math. Ann. 271 (1985) 493-526. | MR | Zbl
, and :10 An analytic proof of Riemann-Roch-Hirzebruch theorem for Kaehler manifolds. J. Diff. Geometry 5 (1971) 251-283. | MR | Zbl
:11 A parametrix for ∂ and Riemann-Roch in Čech theory. Topology 15 (1976) 273-301. | Zbl
and :12 Duality and intersection theory in complex manifolds I. Math. Ann. 237 (1978) 41-77. | MR | Zbl
and :13 Duality and intersection theory in complex manifolds II, the holomorphic Lefschetz formula. Ann. Math. 108 (1978) 518-538. | MR | Zbl
and :