@article{CM_1984__52_3_275_0, author = {Brin, M. and Karcher, H.}, title = {Frame flows on manifolds with pinched negative curvature}, journal = {Compositio Mathematica}, pages = {275--297}, publisher = {Martinus Nijhoff Publishers}, volume = {52}, number = {3}, year = {1984}, mrnumber = {756723}, zbl = {0561.58039}, language = {en}, url = {http://www.numdam.org/item/CM_1984__52_3_275_0/} }
Brin, M.; Karcher, H. Frame flows on manifolds with pinched negative curvature. Compositio Mathematica, Tome 52 (1984) no. 3, pp. 275-297. http://www.numdam.org/item/CM_1984__52_3_275_0/
[1] Geodesic flows on closed Riemannian manifolds of negative curvature. Proc. Steklov Inst. Math. 90 (1967). | MR | Zbl
:[2] Metrische Räume mit einer Krümmung nicht grösser als K, in: Begriff des Räumes in der Geometrie, Bericht von der Riemann Tagung, Berlin, 1957.
:[3] Topological transitivity of one class of dynamical systems and frame flows on manifolds of negative curvature. Funct. Analysis and Its Applic. 9 (1975) 8-16. | MR | Zbl
:[4] Topology of group extensions of Anosov systems. Math. Notes of the A cad. of Sci. of the USSR 18 (1975) 858-864. | MR | Zbl
:[5] On the ergodicity of frame flows. Invent. Math. 60 (1980) 1-7. | MR | Zbl
and :[6] Partially hyperbolic dynamical systems. Mathematics of the USSR-Izvestija 8 (1974) 177-218. | Zbl
and :[7] Gromov's Almost Flat Manifolds. Asterisque 81 (1981). | Numdam | MR | Zbl
and :[8] Equidistant points at infinity on manifolds of negative curvature. Preprint Univ. of North Carolina at Chapel Hill, 1981.
:[9] Geometry of Horospheres. Journal of Differential Geometry 12 (1977) 481-491. | MR | Zbl
and :[10] Ellipsoids and hyperboloids with infinite foci. Preprint IHES, 1981.
:[11] On Lie groups transitive on compact manifolds III. Mathematics of the USSR-Sbornik 4 (1968) 223-240. | Zbl
:[12] Anosov flows with Gibbs measures are also Bernoullian. Israel J. Math. 17 (1974) 380-391. | MR | Zbl
:[13] Classifying the isometric extensions of a Bernoulli shift. J. d'Analyse Mathematique 34 (1978) 36-60. | MR | Zbl
: