@article{ASNSP_1991_4_18_2_193_0, author = {Kr\"uger, Andreas}, title = {Homogeneous {Cauchy-Riemann} structures}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {193--212}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 18}, number = {2}, year = {1991}, mrnumber = {1129301}, zbl = {0787.32022}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1991_4_18_2_193_0/} }
TY - JOUR AU - Krüger, Andreas TI - Homogeneous Cauchy-Riemann structures JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1991 SP - 193 EP - 212 VL - 18 IS - 2 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1991_4_18_2_193_0/ LA - en ID - ASNSP_1991_4_18_2_193_0 ER -
Krüger, Andreas. Homogeneous Cauchy-Riemann structures. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 18 (1991) no. 2, pp. 193-212. http://www.numdam.org/item/ASNSP_1991_4_18_2_193_0/
[1] Embeddability of real analytic Cauchy-Riemann manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Vol. VI, 1 (1979), 285-304, MR 80h: 32019. | Numdam | MR | Zbl
- ,[2] Levi-Curvature of manifolds with a Stein rational fibration, Manuscripta Math, 50 (1985), 269-311, MR 87i: 32046. | MR | Zbl
,[3] Homogeneous CR-manifolds, J. Reine Angew. Math. 358 (1985), 125-154, MR 87g: 32035. | MR | Zbl
- - ,[4] Embeddability of abstract CR structures and integrability of related systems, Ann. Inst. Fourier(Grenoble) 37.3 (1987), 131-141 (Their notion of "integrability" is different from the one adopted in this paper), MR 89c: 32053. | Numdam | MR | Zbl
- ,[5] CR structures with group action and extendability of CR functions, Invent. Math. 82 (1985), 359-396, MR 87: 32028. | MR | Zbl
- - ,[6] Some remarks about Lie groups transitive on spheres and tori, Bull. Amer. Math. Soc. 55 (1949), 580-587, MR 10-680. | MR | Zbl
,[7] Le plan projectif des octaves et les sphères comme espaces homogènes, C.R. Acad. Sci. Paris 230 (1950), 1378-1380, MR 11-640. | MR | Zbl
,[8] Spherical hypersurfaces in complex manifolds, Invent. Math. 33 (1976) 3, 223-246, MR 54# 7875. | MR | Zbl
, JR. - ,[9] Links of surface singularities and CR space forms, Comment. Math. Helv. 62 (1987), 240-264, MR 88k: 32022. | MR | Zbl
- - ,[10] Homogeneous CR-hypersurface-structures on spheres, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 14 (1987), 513-525. | Numdam | MR | Zbl
- ,[11] Zur Differentialgeometrie der komplexen Strukturen, Math. Ann. 129 (1955), 50-95, MR 16-857. | MR | Zbl
,[12] The geometry of the Hopf fibrations, Enseign. Math (2) 32 (1986), 173-198, MR 88e: 53067. | MR | Zbl
- - ,[13] Cauchy-Riemann equations in several variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 12 (1968), 275-314, MR 38# 6097. | Numdam | MR | Zbl
,[14] Calibrated geometries, Acta Math.148, (Uppsala 1982), 47-157, MR 85i: 53058. | MR | Zbl
- ,[15] Classification of differentiable actions on Sn, Rn, and Dn with Sk as the principal orbit type, Ann. of Math. (2) 82 (1965), 421-433, MR 31# 5922. | MR | Zbl
- ,[16] Recent developments in homogeneous CRhypersurfaces, in: A. Howard, P.-M. Wong (eds.): Contributions to several complex variables, (proceedings of a conference in honor of Wilhelm Stoll, held at Notre Dame, October, 1984) Vieweg Verlag, Braunschweig 1986, ISBN 3-528-08964-4, 149-177, MR 87k: 32057. | Zbl
- ,[17] Almost-homogeneous Kähler manifolds with hypersurface orbits, Osaka J. Math. 19 (1982), 763-786, MR 84i: 32042. | MR | Zbl
- ,[18] Homogeneous Cauchy-Riemann structures, Dissertation at the University of Notre Dame, IN, USA, April 1985; available through University Microfilms International, Ann Arbor, MI, USA.
,[19] Sur la forme hermitienne canonique des espaces homogènes complexes, Canad. J. Math. 7 (1955), 562-576, MR 17-1109. | MR | Zbl
,[20] Complex homogeneous spaces of semisimple Lie groups of the first category, Math. USSR-Izv. 9 (1975), 939-950, MR 53# 5953. | MR | Zbl
,[21] Complex homogeneous spaces of the Lie group SO(2k+1,2l+1), Math. USSR-Izv. 10 (1976), no. 4, 763-782, MR 54# 7876. | MR | Zbl
,[22] Complex homogeneous spaces of semisimple Lie groups of type Dn, Math, USSR-Izv. 11 (1977), no. 4, MR 58# 17238. | Zbl
,[23] Simply connected homogeneous spaces, Proc. Amer. Math. Soc. 1 (1950), 467-469, MR12-242. | MR | Zbl
,[24] Transformation groups on spheres, Ann. of Math. 44.3 (1943), 454-470, MR 5-60. | MR | Zbl
- ,[25] On pseudo-conformal transformations of hypersurfaces, J. Math. Soc. Japan 15.3 (1963), 289-300, MR 27# 5275. | MR | Zbl
- ,[26] On Lie groups transitive on compact manifolds III, Math. USSR-Sb. 4.2 (1968), 233-240, MR 36# 6547, see also MR 40# 5795. | Zbl
,[27] Decompositions of reductive Lie groups, Math. USSR-Sb. 9.4 (1969), 515-554, MR 43# 3393. | MR | Zbl
,[28] Groupes de Lie compacts de transformations de l'espace euclidien et les sphères comme espaces homogènes, Comment. Math. Helv. 33 (1959), 109-120, MR 21# 2708. | MR | Zbl
,[29] A class of complex-analytic manifolds, Portugal. Math. 12 (1953), 129-132, MR 15-505. | MR | Zbl
,[30] Classification of left invariant complex structures on GL(2,R) and U(2), Kumamoto J. Math. 14 (1981), 115-123, MR 84b: 53050. | MR | Zbl
,[31] Classification of left invariant complex structures on SL(3,R), Kumamoto J. Math. 15 (1982), 59-72, MR 84c: 32034. | MR | Zbl
,[32] Invariant complex structures on reductive Lie groups, J. Reine Angew. Math. 371 (1986), 191-215, MR 87k: 32058. | MR | Zbl
,[33] Closed manifolds with homogeneous complex structure, Amer. J. Math. 76 (1954), 1-32, MR 16-518. | MR | Zbl
,