Spectral properties of Schrödinger operators and scattering theory
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 2 (1975) no. 2, pp. 151-218.
@article{ASNSP_1975_4_2_2_151_0,
     author = {Agmon, Shmuel},
     title = {Spectral properties of {Schr\"odinger} operators and scattering theory},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {151--218},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 2},
     number = {2},
     year = {1975},
     mrnumber = {397194},
     zbl = {0315.47007},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1975_4_2_2_151_0/}
}
TY  - JOUR
AU  - Agmon, Shmuel
TI  - Spectral properties of Schrödinger operators and scattering theory
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1975
SP  - 151
EP  - 218
VL  - 2
IS  - 2
PB  - Scuola normale superiore
UR  - http://www.numdam.org/item/ASNSP_1975_4_2_2_151_0/
LA  - en
ID  - ASNSP_1975_4_2_2_151_0
ER  - 
%0 Journal Article
%A Agmon, Shmuel
%T Spectral properties of Schrödinger operators and scattering theory
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1975
%P 151-218
%V 2
%N 2
%I Scuola normale superiore
%U http://www.numdam.org/item/ASNSP_1975_4_2_2_151_0/
%G en
%F ASNSP_1975_4_2_2_151_0
Agmon, Shmuel. Spectral properties of Schrödinger operators and scattering theory. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 2 (1975) no. 2, pp. 151-218. http://www.numdam.org/item/ASNSP_1975_4_2_2_151_0/

[1] S. Agmon, Lectures on elliptic boundary value problems, Van Nostrand, Math. Studies, 2 (1965). | MR | Zbl

[2] P. Alsholm - G. Schmidt, Spectral and scattering theory for Schrödinger operators, Arch. Rational Mech. Anal., 40 (1971), pp. 281-311. | MR | Zbl

[3] N. Dunford - J.T. Schwartz, Linear operators, Part II, Interscience, New York - London, 1963. | MR | Zbl

[4] U. Greifenegger - K. Jörgens - J. Weidmann - M. Winkler, Streutheorie für Schrödinger-Operatoren, to appear.

[5] T. Ikebe, Eigenfunction expansions associated with the Schrödinger operators and their applications to scattering theory, Arch. Rational Mech. Anal., 5 (1960), pp. 1-34. | MR | Zbl

[6] T. Kato, Growth properties of solutions of the reduced wave equation with a variable coefficient, Comm. Pure Appl. Math., 12 (1959), pp. 403-425. | MR | Zbl

[7] T. Kato, Perturbation theory for linear operators, Springer, 1966. | Zbl

[8] T. Kato, Some results on potential scattering, Proc. International Conf. Functional Analysis and Related Topics, Tokyo, 1969, Tokyo University Press, 1970, pp. 206-215. | MR | Zbl

[9] T. Kato, Scattering theory and perturbation of continuous spectra, Proc. International Congress Math., Nice, 1970, Gauthier-Villars, vol. 1 (1971), pp. 135-140. | MR | Zbl

[10] T. Kato, S.T. Kuroda - Theory of simple scattering and eigenfunction expansions, Functional Analysis and Related Fields, edited by F. E. Browder, Springer, 1970, pp. 99-131. | MR | Zbl

[11] S.T. Kuroda, On the existence and the unitary property of the scattering operator, Nuovo Cimento, 12 (1959), pp. 431-454. | Zbl

[12] S.T. Kuroda, Spectral representations and the scattering theory for Schrödinger operators, Proc. International Congress Math., Nice, 1970, Gauthier-Villars, vol. 2 (1971), pp. 441-445. | MR | Zbl

[13] S.T. Kuroda, Scattering theory for differential operators - I: Operator theory, J. Math. Soc. Japan, 25 (1973), pp. 75-104. | MR | Zbl

[14] S.T. Kuroda, Scattering theory for differential operators - II : Self-adjoint elliptic operators, J. Math. Soc. Japan, 25 (1973), pp. 222-234. | MR | Zbl

[15] J.L. Lions - E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1, Ed. Dunod, Paris, 1968. | MR | Zbl

[16] J. Milnor, Singular points of complex hypersurfaces, Ann. Math. Studies, vol. 61, Princeton University Press and the University of Tokyo Press, Princeton, 1968. | MR | Zbl

[17] A. Ja. Povzner, The expansion of arbitrary functions in terms of eigenfunctions of the operator -Δu + cu, Math. Sbornik, 32 (1953), pp. 109-156; A.M.S. Translations, Series 2, 60 (1967), pp. 1-49. | Zbl

[18] P.A. Rejto, Some potential perturbations of the Laplacian, Helvetica Physica. Acta, 44 (1971), pp. 708-736. | MR

[19] M. Schechter, Spectra of partial differential operators, North Holland, 1971. | MR | Zbl

[20] M. Schechter, Scattering theory for elliptic operators of arbitrary order, Comm. Mat. Helvetici, 49 (1974), pp. 84-113. | MR | Zbl

[21] J.R. Schulenberger - C.H. Wilcox, Eigenfunction expansions and scattering theory for wave propagation problems of classical physics, Arch. Rational Mech. Anal., 46 (1972), pp. 280-320. | MR | Zbl

[22] N. Shenk - D. Thoe, Eigenfunction expansions and scattering theory for perturbations of - Δ, The Rocky Mountain J. of Math., 1 (1971), pp. 89-125. | Zbl

[23] D. Thoe, Eigenfunction expansions associated with Schrödinger operators in Rn, n ≽ 4, Arch. Rational Mech. Anal., 26 (1967), pp. 335-356. | Zbl