@article{ASNSP_1973_3_27_1_53_0, author = {Fu\v{c}ik, S. and Ne\v{c}as, J. and Sou\v{c}ek, J. and Sou\v{c}ek, V.}, title = {Upper bound for the number of eigenvalues for nonlinear operators}, journal = {Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche}, pages = {53--71}, publisher = {Scuola normale superiore}, volume = {Ser. 3, 27}, number = {1}, year = {1973}, mrnumber = {372918}, zbl = {0263.58007}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1973_3_27_1_53_0/} }
TY - JOUR AU - Fučik, S. AU - Nečas, J. AU - Souček, J. AU - Souček, V. TI - Upper bound for the number of eigenvalues for nonlinear operators JO - Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche PY - 1973 SP - 53 EP - 71 VL - 27 IS - 1 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1973_3_27_1_53_0/ LA - en ID - ASNSP_1973_3_27_1_53_0 ER -
%0 Journal Article %A Fučik, S. %A Nečas, J. %A Souček, J. %A Souček, V. %T Upper bound for the number of eigenvalues for nonlinear operators %J Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche %D 1973 %P 53-71 %V 27 %N 1 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1973_3_27_1_53_0/ %G en %F ASNSP_1973_3_27_1_53_0
Fučik, S.; Nečas, J.; Souček, J.; Souček, V. Upper bound for the number of eigenvalues for nonlinear operators. Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche, Série 3, Tome 27 (1973) no. 1, pp. 53-71. http://www.numdam.org/item/ASNSP_1973_3_27_1_53_0/
[1] Analytic operation8 in real Banaoh apaces, Studia Math. XIV, 1954, 57-78. | Zbl
, :[2] An eigenvalue problem for nonlinear elliptic partial differential equations, Trans. Amer. Math. Soc., 120, 1965, 145-184. | MR | Zbl
:[3] Infinite dimensional ananifolds and nonlinear elliptic eigenvalue problems, Annals of Math. 82, 1965, 459-477. | MR | Zbl
:[4] Bxistence theorearas for minimax points in Banach apaces (in Russian) Trudy Mosk. Mat. Obšč. 2, 1953, 235-274. | MR
:[5] Fredholnt alternative for nonlinear operators in Banach spaces and its applications to the differeaatial and integral equations, Cas. pro pest. mat. 1971, No. 4.
[6] Note on the Fredholm alternative for nonlinear operators, Comment. Math. Univ. Carolinae 12, 1971, 213-226. | MR | Zbl
[7] Ljusternik-,Sch,nirelmann theorem and nonlinear eigenvalue probletit8, Math. Nachr. 53, 1972, 277-289 | MR | Zbl
- :[8] Functional analysis and semigroups, Providence 1957. | Zbl
- :[9] Topological methods in the theory of nonlinear integral equations, Pergamon Press, N. Y. 1964. | Zbl
:[10] Fredholm alternative for nonlinear operators, Comment. Math. Univ. Carolinae 11, 1970, 337-363. | MR | Zbl
:[11] On a class of nonlinear operators in Hilbert space (in Russian) Izv. Ak. Nank SSSR, ser. mat., No 5, 1939, 257-264.
:[12] Application of topology to variationat problems (in Russian) Trudy 2. Vsesujuz, mat. sjezda 1, 1935, 224-237. | Zbl
- :[13] : Topological methods in variational problems and their application to the differential geometry of surface (in Russian) Uspechi Mat. Nank II, 1947, 166-217.
-[14] Les methodes direcfes en thérie des équations elliptiques, Academia, Praha 1967.
:[15] Sur l'alternative de Fredholm pour les operateurs non lineairee avec applications aux problèmes aux limites, Ann. Scuola Norm. Sup. Pisa, XXIII, 1969, 331-345. | Numdam | MR | Zbl
:[16] The Morse-Bard theorem for real-analytic functions, Comment. Math. Univ. Carolinae, 13, 1972, 45-51. | MR | Zbl
- :[17] Variational methods for the study of nonlinear operators, Holden-Day, 1964. | Zbl
:[18] On the discreteneas of the spectrum of nonlinear Sturm-Liouville equation (in Russian) Dokl. Akad. Nank SSSR, 201, 1971, 1045-1048. | MR | Zbl
:[19] On the dieoreteness of the speotrum of nonlinear Sturm-Liouville equation of the fourth order (in Russian) Comment. Math. Univ. Carolinae, 12, 1971, 639-653. | MR | Zbl
- :[20] Fredholm alternative for nonlinear operators and applicationa to partial differeittial equations and integral equations (to appear). | Zbl
:[21] Remark on the Fredholm alternative for nonlinear operators with applioation to sntegrat equations of generalized Hammerstein type (to appear).
: