[Topologie à grande échelle, agrandissabilité et non-annulation en homologie]
En utilisant des méthodes de topologie à grande échelle, on prouve que les classes fondamentales des variétés agrandissables ne s’annulent pas, ni dans l’homologie rationnelle de leurs groupes fondamentaux, ni dans la -théorie des -algèbres réduites correspondantes. Nos résultats ne dépendent pas de la conjecture de Baum-Connes, et confirment de façon indépendante certaines conséquences de cette conjecture.
Using methods from coarse topology we show that fundamental classes of closed enlargeable manifolds map non-trivially both to the rational homology of their fundamental groups and to the -theory of the corresponding reduced -algebras. Our proofs do not depend on the Baum-Connes conjecture and provide independent confirmation for specific predictions derived from this conjecture.
@article{ASENS_2008_4_41_3_473_0, author = {Hanke, Bernhard and Kotschick, Dieter and Roe, John and Schick, Thomas}, title = {Coarse topology, enlargeability, and essentialness}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {473--495}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 41}, number = {3}, year = {2008}, doi = {10.24033/asens.2073}, mrnumber = {2482205}, zbl = {1169.53032}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2073/} }
TY - JOUR AU - Hanke, Bernhard AU - Kotschick, Dieter AU - Roe, John AU - Schick, Thomas TI - Coarse topology, enlargeability, and essentialness JO - Annales scientifiques de l'École Normale Supérieure PY - 2008 SP - 473 EP - 495 VL - 41 IS - 3 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/asens.2073/ DO - 10.24033/asens.2073 LA - en ID - ASENS_2008_4_41_3_473_0 ER -
%0 Journal Article %A Hanke, Bernhard %A Kotschick, Dieter %A Roe, John %A Schick, Thomas %T Coarse topology, enlargeability, and essentialness %J Annales scientifiques de l'École Normale Supérieure %D 2008 %P 473-495 %V 41 %N 3 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/asens.2073/ %R 10.24033/asens.2073 %G en %F ASENS_2008_4_41_3_473_0
Hanke, Bernhard; Kotschick, Dieter; Roe, John; Schick, Thomas. Coarse topology, enlargeability, and essentialness. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 41 (2008) no. 3, pp. 473-495. doi : 10.24033/asens.2073. http://www.numdam.org/articles/10.24033/asens.2073/
[1] Elliptic operators, discrete groups and von Neumann algebras, in Colloque “Analyse et Topologie” en l'honneur de Henri Cartan (Orsay, 1974), Astérisque 32-33, 1976, 43-72. | MR | Zbl
,[2] Classifying space for proper actions and -theory of group -algebras, in Proceedings of a special session on -algebras: 1943-1993 (San Antonio, TX, 1993), Contemp. Math. 167, 1994, 240-291. | Zbl
, & ,[3] -theory for operator algebras, second éd., Mathematical Sciences Research Institute Publications 5, Cambridge University Press, 1998. | MR | Zbl
,[4] Aperiodic tilings, positive scalar curvature and amenability of spaces, J. Amer. Math. Soc. 5 (1992), 907-918. | Zbl
& ,[5] Atiyah’s -index theorem, Enseign. Math. 49 (2003), 85-93. | Zbl
& ,[6] On hypersphericity of manifolds with finite asymptotic dimension, Trans. Amer. Math. Soc. 355 (2003), 155-167. | MR | Zbl
,[7] Remarks on a conjecture of Gromov and Lawson, in High-dimensional manifold topology, World Sci. Publ., River Edge, NJ, 2003, 159-176. | Zbl
, & ,[8] Volume growth and positive scalar curvature, Geom. Funct. Anal. 10 (2000), 821-828. | Zbl
& ,[9] Volume and bounded cohomology, Publ. Math. I.H.É.S. 56 (1982), 5-99 (1983). | Numdam | MR | Zbl
,[10] Large Riemannian manifolds, in Curvature and topology of Riemannian manifolds (Katata, 1985), Lecture Notes in Math. 1201, Springer, 1986, 108-121. | MR | Zbl
,[11] Asymptotic invariants of infinite groups, in Geometric group theory, Vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press, 1993, 1-295. | MR | Zbl
,[12] Positive curvature, macroscopic dimension, spectral gaps and higher signatures, in Functional analysis on the eve of the 21st century, Vol. II (New Brunswick, NJ, 1993), Progr. Math. 132, Birkhäuser, 1996, 1-213. | MR | Zbl
,[13] Spin and scalar curvature in the presence of a fundamental group. I, Ann. of Math. 111 (1980), 209-230. | Zbl
& ,[14] Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math. I.H.É.S. 58 (1983), 83-196. | Numdam | Zbl
& ,[15] Enlargeability and index theory, J. Differential Geom. 74 (2006), 293-320. | Zbl
& ,[16] Enlargeability and index theory: infinite covers, -Theory 38 (2007), 23-33. | Zbl
& ,[17] -algebras and controlled topology, -Theory 11 (1997), 209-239. | Zbl
, & ,[18] Analytic -homology, Oxford Mathematical Monographs, Oxford University Press, 2000. | Zbl
& ,[19] Generalized homology theories on compact metric spaces, Michigan Math. J. 24 (1977), 203-224. | Zbl
, & ,[20] -theory and Steenrod homology: applications to the Brown-Douglas-Fillmore theory of operator algebras, Trans. Amer. Math. Soc. 227 (1977), 63-107. | Zbl
& ,[21] On the Steenrod homology theory, in Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser. 226, Cambridge Univ. Press, 1995, 79-96. | MR | Zbl
,[22] Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics 90, American Math. Soc., 1996. | MR | Zbl
,[23] Comparing analytic assembly maps, Q. J. Math. 53 (2002), 241-248. | MR | Zbl
,[24] Lectures on coarse geometry, University Lecture Series 31, American Math. Soc., 2003. | MR | Zbl
,[25] A counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture, Topology 37 (1998), 1165-1168. | MR | Zbl
,[26] Group actions on manifolds, Contemporary Mathematics 36, Amer. Math. Soc., 1985. | MR | Zbl
(éd.),[27] Manifolds of positive scalar curvature, in Topology of high-dimensional manifolds, No. 1, 2 (Trieste, 2001), ICTP Lect. Notes 9, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2002, 661-709. | MR | Zbl
,[28] -theory and -algebras: a friendly approach, Oxford Science Publications, Oxford University Press, 1993. | MR | Zbl
,[29] The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math. 139 (2000), 201-240. | MR | Zbl
,Cité par Sources :