@article{ASENS_2006_4_39_6_983_0, author = {Caldero, Philippe and Keller, Bernhard}, title = {From triangulated categories to cluster algebras {II}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {983--1009}, publisher = {Elsevier}, volume = {Ser. 4, 39}, number = {6}, year = {2006}, doi = {10.1016/j.ansens.2006.09.003}, mrnumber = {2316979}, zbl = {05149415}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.ansens.2006.09.003/} }
TY - JOUR AU - Caldero, Philippe AU - Keller, Bernhard TI - From triangulated categories to cluster algebras II JO - Annales scientifiques de l'École Normale Supérieure PY - 2006 SP - 983 EP - 1009 VL - 39 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.ansens.2006.09.003/ DO - 10.1016/j.ansens.2006.09.003 LA - en ID - ASENS_2006_4_39_6_983_0 ER -
%0 Journal Article %A Caldero, Philippe %A Keller, Bernhard %T From triangulated categories to cluster algebras II %J Annales scientifiques de l'École Normale Supérieure %D 2006 %P 983-1009 %V 39 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.ansens.2006.09.003/ %R 10.1016/j.ansens.2006.09.003 %G en %F ASENS_2006_4_39_6_983_0
Caldero, Philippe; Keller, Bernhard. From triangulated categories to cluster algebras II. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 39 (2006) no. 6, pp. 983-1009. doi : 10.1016/j.ansens.2006.09.003. http://www.numdam.org/articles/10.1016/j.ansens.2006.09.003/
[1] Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (6) (1989) 1183-1205, 1337. | MR | Zbl
, ,[2] The equivalence of certain functors occurring in the representation theory of Artin algebras and species, J. LMS 14 (1) (1976) 183-187. | MR | Zbl
, ,[3] Cluster tilted algebras, Trans. Amer. Math. Soc. 359 (2007) 323-332. | MR | Zbl
, , ,[4] Cluster mutation via quiver representations, Comment. Math. Helv., submitted for publication, math.RT/0412077.
, , ,[5] Clusters and seeds in acyclic cluster algebras. Appendix by A.B. Buan, R.J. Marsh, P. Caldero, B. Keller, I. Reiten, and G. Todorov, Proc. Amer. Math. Soc., submitted for publication, math.RT/0510359.
, , , ,[6] Tilting theory and cluster combinatorics, Adv. Math., submitted for publication, math.RT/0402054. | MR | Zbl
, , , , ,[7] Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006) 595-616, math.RT/0410184. | MR | Zbl
, ,[8] Quivers with relations arising from clusters ( case), Trans. Amer. Math. Soc. 358 (2006) 1347-1364. | MR | Zbl
, , ,[9] Quivers with relations and cluster tilted algebras, J. Alg. and Rep. Th., submitted for publication, math.RT/0411238. | MR | Zbl
, , ,[10] From triangulated categories to cluster algebras, Invent. Math., submitted for publication, math.RT/0506018. | Zbl
, ,[11] Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2) (2002) 497-529. | MR | Zbl
, ,[12] Cluster algebras. II. Finite type classification, Invent. Math. 154 (1) (2003) 63-121. | MR | Zbl
, ,[13] Cluster algebras: Notes for the CDM-03 conference, math.RT/0311493. | Zbl
, ,[14] Rigid modules over preprojective algebras, math.RT/0503324. | Zbl
, , ,[15] Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. | MR | Zbl
,[16] Piecewise hereditary algebras, London Math. Soc. 20 (1988) 23-28. | MR | Zbl
, , ,[17] Hubery A., Acyclic cluster algebras via Ringel-Hall algebras, Preprint available at the author's homepage.
[18] Triangulated orbit categories, Doc. Math. 10 (2005) 551-581. | EuDML | MR | Zbl
,[19] Cluster tilted algebras are Gorenstein and stably Calabi-Yau, math.RT/0512471. | Zbl
, ,[20] Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Mosc. Math. J. 4 (4) (2004) 947-974, 982. | MR | Zbl
, ,Cité par Sources :