Semisimple strata for p-adic classical groups
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 35 (2002) no. 3, pp. 423-435.
@article{ASENS_2002_4_35_3_423_0,
     author = {Stevens, Shaun},
     title = {Semisimple strata for $p$-adic classical groups},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {423--435},
     publisher = {Elsevier},
     volume = {Ser. 4, 35},
     number = {3},
     year = {2002},
     doi = {10.1016/s0012-9593(02)01095-9},
     zbl = {1009.22017},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/s0012-9593(02)01095-9/}
}
TY  - JOUR
AU  - Stevens, Shaun
TI  - Semisimple strata for $p$-adic classical groups
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2002
SP  - 423
EP  - 435
VL  - 35
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/s0012-9593(02)01095-9/
DO  - 10.1016/s0012-9593(02)01095-9
LA  - en
ID  - ASENS_2002_4_35_3_423_0
ER  - 
%0 Journal Article
%A Stevens, Shaun
%T Semisimple strata for $p$-adic classical groups
%J Annales scientifiques de l'École Normale Supérieure
%D 2002
%P 423-435
%V 35
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/s0012-9593(02)01095-9/
%R 10.1016/s0012-9593(02)01095-9
%G en
%F ASENS_2002_4_35_3_423_0
Stevens, Shaun. Semisimple strata for $p$-adic classical groups. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 35 (2002) no. 3, pp. 423-435. doi : 10.1016/s0012-9593(02)01095-9. http://www.numdam.org/articles/10.1016/s0012-9593(02)01095-9/

[1] Auzende F., Construction de types à la Bushnell et Kutzko dans les groupes Sp2N et SO2N, Prépublication 98-15 du LMENS, 1998.

[2] Blasco L., Blondel C., Types induits des paraboliques maximaux de Sp4(F) et GSp4(F), Ann. Inst. Fourier (Grenoble) 49 (6) (1999) 1805-1851. | Numdam | MR | Zbl

[3] Broussous P., Minimal strata for GL(m,D), J. Reine Angew. Math. 514 (1) (1999) 199-236. | MR | Zbl

[4] Broussous P., The building of GL(m,D) as a space of lattice functions, Preprint, King's College London, 1998.

[5] Bushnell C.J., Hereditary orders, Gauss sums, and supercuspidal representations of GLN, J. Reine Angew. Math. 375/376 (1987) 184-210. | MR | Zbl

[6] Bushnell C.J., Kutzko P.C., The Admissible Dual of GL(N) via Compact Open Subgroups, Princeton University Press, 1993. | MR

[7] Bushnell C.J., Kutzko P.C., Semisimple types, Compositio Math. 119 (1999) 53-97. | MR | Zbl

[8] Bushnell C.J., Kutzko P.C., Smooth representations of reductive p-adic groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1998) 582-634. | MR | Zbl

[9] Bushnell C.J., Kutzko P.C., Supercuspidal representations of GL(N), Manuscript, King's College London, 1996.

[10] Howe R., Moy A., Minimal K-types for GLn over a p-adic field, SMF, Astérisque 171-172 (1989) 257-273. | Numdam | MR | Zbl

[11] Kutzko P.C., Towards a classification of the supercuspidal representations of GLN, J. London Math. Soc. (2) 37 (1988) 265-274. | MR | Zbl

[12] Lemaire B., Strates scindées pour un groupe réductif p-adique, C. R. Acad. Sci. Paris Sér. I Math. 326 (4) (1998) 407-410. | MR | Zbl

[13] Morris L.E., Fundamental G-strata for p-adic classical groups, Duke Math. J. 64 (1991) 501-553. | MR | Zbl

[14] Morris L.E., Tamely ramified supercuspidal representations of classical groups I: Filtrations, Ann. Sci. École Norm. Sup. (4) 24 (6) (1991) 705-738. | Numdam | MR | Zbl

[15] Morris L.E., Level zero G-types, Compositio Math. 118 (2) (1999) 135-157. | MR | Zbl

[16] Moy A., Prasad G., Unrefined minimal K-types for p-adic groups, Invent. Math. 116 (1994) 393-408. | MR | Zbl

[17] Moy A., Prasad G., Jacquet functors and unrefined minimal K-types, Comment. Math. Helv. 71 (1) (1996) 98-121. | MR | Zbl

[18] Pan S.-Y., Yu J.-K., Unrefined minimal K-types for p-adic classical groups, Manuscript, Princeton University, 1998.

[19] Stevens S., Double coset decompositions and intertwining, Manuscripta Math. 106 (2001) 349-364. | MR | Zbl

[20] Stevens S., Intertwining and supercuspidal types for classical p-adic groups, Proc. London Math. Soc. (3) 83 (2001) 120-140. | MR | Zbl

Cité par Sources :