Some regularity theorems in riemannian geometry
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 14 (1981) no. 3, pp. 249-260.
@article{ASENS_1981_4_14_3_249_0,
     author = {Deturck, Dennis M. and Kazdan, Jerry L.},
     title = {Some regularity theorems in riemannian geometry},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {249--260},
     publisher = {Elsevier},
     volume = {Ser. 4, 14},
     number = {3},
     year = {1981},
     doi = {10.24033/asens.1405},
     mrnumber = {83f:53018},
     zbl = {0486.53014},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.1405/}
}
TY  - JOUR
AU  - Deturck, Dennis M.
AU  - Kazdan, Jerry L.
TI  - Some regularity theorems in riemannian geometry
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1981
SP  - 249
EP  - 260
VL  - 14
IS  - 3
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.24033/asens.1405/
DO  - 10.24033/asens.1405
LA  - en
ID  - ASENS_1981_4_14_3_249_0
ER  - 
%0 Journal Article
%A Deturck, Dennis M.
%A Kazdan, Jerry L.
%T Some regularity theorems in riemannian geometry
%J Annales scientifiques de l'École Normale Supérieure
%D 1981
%P 249-260
%V 14
%N 3
%I Elsevier
%U https://www.numdam.org/articles/10.24033/asens.1405/
%R 10.24033/asens.1405
%G en
%F ASENS_1981_4_14_3_249_0
Deturck, Dennis M.; Kazdan, Jerry L. Some regularity theorems in riemannian geometry. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 14 (1981) no. 3, pp. 249-260. doi : 10.24033/asens.1405. https://www.numdam.org/articles/10.24033/asens.1405/

[BJS] L. Bers, F. John and M. Schechter, Partial Differential Equations, John Wiley, 1964 (later reprinted by Amer. Math. Soc.). | MR | Zbl

[CH] E. Calabi and P. Hartman, On the Smoothness of Isometries (Duke Math. J., Vol. 37, 1970, pp. 741-750). | MR | Zbl

[C] E. Cartan, Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien (Ann. Soc. Pol. Math., Vol. 6, 1927, pp. 1-17). | JFM

[D1] D. Deturck, Metrics With Prescribed Ricci Curvature [Proceedings of I.A.S. Differential Geometry Seminar, 1979-1980 (to appear in Annals of Math. series)].

[D2] D. Deturck, Existence of Metrics With Prescribed Ricci Curvature : Local Theory (to appear).

[E] A. Einstein, Näherungsweise Integration der Feldgleichungen der Gravitation (S.-B. Preuss. Akad. Wiss., 1916, pp. 688-696). | JFM

[FM] A. Fischer and J. Marsden, General Relativity, Partial Differential Equations, and Dynamical Systems (Proc. Symp. Pure Math., Vol. 28 ; Amer. Math. Soc., 1973, pp. 309-327). | MR | Zbl

[GW] R. Greene and H. Wu, Embedding of Open Riemannian Manifolds by Harmonic Functions (Ann. Inst. Fourier, Grenoble, Vol. 25, 1975, pp. 215-235). | Numdam | MR | Zbl

[H] P. Hartman, On Geodesic Coordinates (American J. Math., Vol. 73, 1951, pp. 949-954). | MR | Zbl

[J] M. Janet, Sur la possibilité de plonger un espace riemannien donné dans un espace euclidien (Ann. Soc. Pol. Math., Vol. 5, 1926, pp. 38-42). | JFM

[K] J. Kazdan, Another Proof of Bianchi's Identity in Riemannian Geometry (to appear in Proc. Amer. Math. Soc., 1981). | MR | Zbl

[KW] J. Kazdan and F. Warner, Curvature Functions for Open 2-Manifolds (Ann. Math., Vol. 199, 1974, pp. 203-219). | MR | Zbl

[KN] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience, New York, 1964. | Zbl

[L] C. Lanczos, Ein Vereinfachendes Koordinatensystem für die Einsteinschen Gravitationsgleichungen (Phys. Z., Vol. 23, 1922, pp. 537-539). | JFM

[M] B. Malgrange, Sur l'intégrabilité des structures presque-complexes (Symposia Math., Vol. II, I.N.D.A.M., Rome, 1968, Academic Press, London, 1969, pp. 289-296). | MR | Zbl

[Mo] C. Morrey, Jr., Multiple Integrals in the Calculus of Variations (Grund. der Math. Wiss., Vol. 133, Springer-Verlag, New York, 1966). | Zbl

[My] S. D. Myers, Riemannian Manifolds in the Large (Duke Math. J., Vol. 1, 1935, pp. 39-49). | JFM | Zbl

[S] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 5, Publish or Perish, 1975. | Zbl

  • Hupp, Erik; Naber, Aaron; Wang, Kai-Hsiang Lower Ricci curvature and nonexistence of manifold structure, Geometry Topology, Volume 29 (2025) no. 1, pp. 443-477 | DOI:10.2140/gt.2025.29.443 | Zbl:7990027
  • An, Zhongshan; Huang, Lan-Hsuan Static vacuum extensions with prescribed Bartnik boundary data near a general static vacuum metric, Annals of PDE, Volume 10 (2024) no. 1, p. 57 (Id/No 6) | DOI:10.1007/s40818-024-00169-w | Zbl:7836422
  • Reintjes, Moritz Strong cosmic censorship with bounded curvature, Classical and Quantum Gravity, Volume 41 (2024) no. 17, p. 13 (Id/No 175002) | DOI:10.1088/1361-6382/ad636e | Zbl:7893953
  • Reintjes, Moritz; Temple, Blake On weak solutions to the geodesic equation in the presence of curvature bounds, Journal of Differential Equations, Volume 392 (2024), pp. 306-324 | DOI:10.1016/j.jde.2024.02.014 | Zbl:7825943
  • Lesourd, Martin; Unger, Ryan; Yau, Shing-Tung The positive mass theorem with arbitrary ends, Journal of Differential Geometry, Volume 128 (2024) no. 1, pp. 257-293 | DOI:10.4310/jdg/1721075263 | Zbl:1547.53042
  • Fowdar, Udhav Explicit abelian instantons on S1-invariant Kähler Einstein 6-manifolds, Journal of Geometry and Physics, Volume 203 (2024), p. 24 (Id/No 105269) | DOI:10.1016/j.geomphys.2024.105269 | Zbl:1550.14012
  • Colombo, Giulio; Mariani, Marco; Rigoli, Marco A sharp Eells-Sampson type theorem under positive sectional curvature upper bounds, Journal of Mathematical Analysis and Applications, Volume 540 (2024) no. 1, p. 10 (Id/No 128584) | DOI:10.1016/j.jmaa.2024.128584 | Zbl:7915166
  • Dahl, Mattias; Kröncke, Klaus Local and global scalar curvature rigidity of Einstein manifolds, Mathematische Annalen, Volume 388 (2024) no. 1, pp. 453-510 | DOI:10.1007/s00208-022-02521-6 | Zbl:1551.83006
  • Yan, Weiping; Liu, Jun; Li, Weijia Dynamics of the closed hypersurfaces in central force fields, Mathematische Annalen, Volume 389 (2024) no. 2, pp. 1351-1403 | DOI:10.1007/s00208-023-02676-w | Zbl:1543.53101
  • Brammen, Oliver The shifted wave equation on non-flat harmonic manifolds, The Journal of Geometric Analysis, Volume 34 (2024) no. 2, p. 54 (Id/No 33) | DOI:10.1007/s12220-023-01474-9 | Zbl:1547.35707
  • Lee, Dan A.; Lesourd, Martin; Unger, Ryan Noncompact fill-ins of Bartnik data, The Journal of Geometric Analysis, Volume 34 (2024) no. 4, p. 27 (Id/No 102) | DOI:10.1007/s12220-023-01462-z | Zbl:1542.53042
  • Dragomir, Sorin; Esposito, Francesco; Loubeau, Eric Harmonic morphisms from Fefferman spaces, The Journal of Geometric Analysis, Volume 34 (2024) no. 9, p. 63 (Id/No 280) | DOI:10.1007/s12220-024-01731-5 | Zbl:1544.32063
  • Buttsworth, Timothy; Hallgren, Maximilien; Zhang, Yongjia Canonical surgeries in rotationally invariant Ricci flow, Transactions of the American Mathematical Society, Volume 377 (2024) no. 11, pp. 7877-7944 | DOI:10.1090/tran/9220 | Zbl:7935724
  • Domínguez-Vázquez, Miguel; Enciso, Alberto; Peralta-Salas, Daniel Overdetermined boundary problems with nonconstant Dirichlet and Neumann data, Analysis PDE, Volume 16 (2023) no. 9, pp. 1989-2003 | DOI:10.2140/apde.2023.16.1989 | Zbl:1530.35160
  • Nikolayevsky, Yuri; Park, Jeonghyeong Einstein hypersurfaces in irreducible symmetric spaces, Annali di Matematica Pura ed Applicata. Serie Quarta, Volume 202 (2023) no. 4, pp. 1719-1751 | DOI:10.1007/s10231-022-01298-4 | Zbl:1528.53055
  • Ebenfelt, Peter; Xiao, Ming; Xu, Hang Kähler-Einstein metrics and obstruction flatness of circle bundles, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 177 (2023), pp. 368-414 | DOI:10.1016/j.matpur.2023.07.003 | Zbl:1522.32086
  • Buttsworth, Timothy; Pulemotov, Artem The prescribed cross curvature problem on the three-sphere, Journal of Functional Analysis, Volume 285 (2023) no. 5, p. 58 (Id/No 110019) | DOI:10.1016/j.jfa.2023.110019 | Zbl:1517.53041
  • Appleton, Alexander Eguchi-Hanson singularities in U(2)-invariant Ricci flow, Peking Mathematical Journal, Volume 6 (2023) no. 1, pp. 1-141 | DOI:10.1007/s42543-022-00048-y | Zbl:1520.53083
  • Reintjes, Moritz; Temple, Blake Optimal regularity and Uhlenbeck compactness for general relativity and Yang–Mills theory, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 479 (2023) no. 2271 | DOI:10.1098/rspa.2022.0444
  • Hao, Yihong; Wang, An; Zhang, Liyou A note on the complete Kähler-Einstein metrics of disk bundles over compact homogeneous Kähler manifolds, The Journal of Geometric Analysis, Volume 33 (2023) no. 9, p. 17 (Id/No 291) | DOI:10.1007/s12220-023-01355-1 | Zbl:1522.32069
  • Chan, Pak-Yeung; Zhu, Bo On a dichotomy of the curvature decay of steady Ricci solitons, Advances in Mathematics, Volume 404 (2022), p. 40 (Id/No 108458) | DOI:10.1016/j.aim.2022.108458 | Zbl:1494.53044
  • Miyanishi, Yoshihisa Weyl's law for the eigenvalues of the Neumann-Poincaré operators in three dimensions: Willmore energy and surface geometry, Advances in Mathematics, Volume 406 (2022), p. 19 (Id/No 108547) | DOI:10.1016/j.aim.2022.108547 | Zbl:7567808
  • Buttsworth, Timothy; Krishnan, Anusha M. Prescribing Ricci curvature on a product of spheres, Annali di Matematica Pura ed Applicata. Serie Quarta, Volume 201 (2022) no. 1, pp. 1-36 | DOI:10.1007/s10231-021-01105-6 | Zbl:1493.53054
  • Avalos, Rodrigo; Laurain, Paul; Lira, Jorge H. A positive energy theorem for fourth-order gravity, Calculus of Variations and Partial Differential Equations, Volume 61 (2022) no. 2, p. 33 (Id/No 48) | DOI:10.1007/s00526-021-02152-w | Zbl:1490.35487
  • Koerber, Thomas A free boundary isometric embedding problem in the unit ball, Calculus of Variations and Partial Differential Equations, Volume 61 (2022) no. 2, p. 36 (Id/No 50) | DOI:10.1007/s00526-021-02173-5 | Zbl:1498.53005
  • Lee, Dan A.; Lesourd, Martin; Unger, Ryan Density and positive mass theorems for initial data sets with boundary, Communications in Mathematical Physics, Volume 395 (2022) no. 2, pp. 643-677 | DOI:10.1007/s00220-022-04439-1 | Zbl:1510.83017
  • Li, Yuxiang; Sun, Jianxin; Tang, Hongyan Metrics on a Surface with Bounded Total Curvature, International Mathematics Research Notices, Volume 2022 (2022) no. 17, p. 13212 | DOI:10.1093/imrn/rnab089
  • Street, Brian; Yao, Liding Improving the regularity of vector fields, Journal of Functional Analysis, Volume 283 (2022) no. 5, p. 75 (Id/No 109537) | DOI:10.1016/j.jfa.2022.109537 | Zbl:1504.53025
  • Street, Brian Coordinates adapted to vector fields. II: Sharp results, American Journal of Mathematics, Volume 143 (2021) no. 6, pp. 1791-1840 | DOI:10.1353/ajm.2021.0046 | Zbl:1489.58002
  • Kapovitch, Vitali; Lytchak, Alexander Remarks on manifolds with two-sided curvature bounds, Analysis and Geometry in Metric Spaces, Volume 9 (2021), pp. 53-64 | DOI:10.1515/agms-2020-0122 | Zbl:1483.53056
  • Chen, Jingyi; Ma, John Man Shun On the compactness of Hamiltonian stationary Lagrangian surfaces in Kähler surfaces, Calculus of Variations and Partial Differential Equations, Volume 60 (2021) no. 2, p. 23 (Id/No 75) | DOI:10.1007/s00526-020-01901-7 | Zbl:1466.53088
  • Akutagawa, Kazuo An Obata-type theorem on compact Einstein manifolds with boundary, Geometriae Dedicata, Volume 213 (2021), pp. 577-587 | DOI:10.1007/s10711-021-00598-y | Zbl:1469.53088
  • Wu, Peng Einstein Four-Manifolds With Self-Dual Weyl Curvature of Nonnegative Determinant, International Mathematics Research Notices, Volume 2021 (2021) no. 2, p. 1043 | DOI:10.1093/imrn/rnz238
  • Buttsworth, Timothy; Hallgren, Maximilien Local stability of Einstein metrics under the Ricci iteration, Journal of Functional Analysis, Volume 280 (2021) no. 2, p. 22 (Id/No 108801) | DOI:10.1016/j.jfa.2020.108801 | Zbl:1454.53042
  • Li, Haozhao; Li, Yu; Wang, Bing On the structure of Ricci shrinkers, Journal of Functional Analysis, Volume 280 (2021) no. 9, p. 75 (Id/No 108955) | DOI:10.1016/j.jfa.2021.108955 | Zbl:1464.53113
  • Gilkey, P. B.; Park, J. H. Harmonic radial vector fields on harmonic spaces, Journal of Mathematical Analysis and Applications, Volume 504 (2021) no. 2, p. 9 (Id/No 125405) | DOI:10.1016/j.jmaa.2021.125405 | Zbl:1485.53083
  • Prior, Christopher B.; Yeates, Anthony R. Intrinsic winding of braided vector fields in tubular subdomains, Journal of Physics A: Mathematical and Theoretical, Volume 54 (2021) no. 46, p. 21 (Id/No 465701) | DOI:10.1088/1751-8121/ac2ea3 | Zbl:1519.76369
  • Feizmohammadi, Ali; Ilmavirta, Joonas; Kian, Yavar; Oksanen, Lauri Recovery of time-dependent coefficients from boundary data for hyperbolic equations, Journal of Spectral Theory, Volume 11 (2021) no. 3, pp. 1107-1143 | DOI:10.4171/jst/367 | Zbl:1484.35407
  • Cui, Qing; Sun, Linlin A note on rigidity of Einstein four-manifolds with positive sectional curvature, Manuscripta Mathematica, Volume 165 (2021) no. 1-2, pp. 269-282 | DOI:10.1007/s00229-020-01217-y | Zbl:1465.53062
  • Hirica, Iulia; Udriste, Constantin; Pripoae, Gabriel; Tevy, Ionel Riccati PDEs That Imply Curvature-Flatness, Mathematics, Volume 9 (2021) no. 5, p. 537 | DOI:10.3390/math9050537
  • Wei, Guodong Weak convergence of branched conformal immersions with uniformly bounded areas and Willmore energies, Science China. Mathematics, Volume 64 (2021) no. 4, pp. 781-798 | DOI:10.1007/s11425-018-9475-1 | Zbl:1472.53077
  • Choi, Young-Jun; Yoo, Sungmin Holomorphic families of strongly pseudoconvex domains in a Kähler manifold, The Journal of Geometric Analysis, Volume 31 (2021) no. 3, pp. 2639-2655 | DOI:10.1007/s12220-020-00369-3 | Zbl:1460.32051
  • Jin, Xiaoshang Finite boundary regularity for conformally compact Einstein manifolds of dimension 4, The Journal of Geometric Analysis, Volume 31 (2021) no. 4, pp. 4004-4023 | DOI:10.1007/s12220-020-00423-0 | Zbl:1465.32002
  • Braun, Matthias; Choi, Young-Jun; Schumacher, Georg Positivity of direct images of fiberwise Ricci-flat metrics on Calabi-Yau fibrations, Transactions of the American Mathematical Society, Volume 374 (2021) no. 6, pp. 4267-4292 | DOI:10.1090/tran/8305 | Zbl:1472.32011
  • Bande, Gianluca; Cappelletti-Montano, Beniamino; Loi, Andrea η-Einstein Sasakian immersions in non-compact Sasakian space forms, Annali di Matematica Pura ed Applicata. Serie Quarta, Volume 199 (2020) no. 6, pp. 2117-2124 | DOI:10.1007/s10231-020-00959-6 | Zbl:1453.53051
  • Pediconi, Francesco A local version of the Myers-Steenrod theorem, Bulletin of the London Mathematical Society, Volume 52 (2020) no. 5, pp. 871-884 | DOI:10.1112/blms.12367 | Zbl:1454.53038
  • Agostiniani, Virginia; Mazzieri, Lorenzo Monotonicity formulas in potential theory, Calculus of Variations and Partial Differential Equations, Volume 59 (2020) no. 1, p. 32 (Id/No 6) | DOI:10.1007/s00526-019-1665-2 | Zbl:1428.35008
  • Carfora, Mauro; Familiari, Francesca Ricci curvature and quantum geometry, International Journal of Geometric Methods in Modern Physics, Volume 17 (2020) no. 04, p. 2050049 | DOI:10.1142/s0219887820500498
  • Steinacker, Harold C. Higher-spin gravity and torsion on quantized space-time in matrix models, Journal of High Energy Physics, Volume 2020 (2020) no. 4, p. 40 (Id/No 111) | DOI:10.1007/jhep04(2020)111 | Zbl:1436.83027
  • Wu, Damin; Yau, Shing-Tung Invariant metrics on negatively pinched complete Kähler manifolds, Journal of the American Mathematical Society, Volume 33 (2020) no. 1, pp. 103-133 | DOI:10.1090/jams/933 | Zbl:1509.32007
  • Debin, Clément A compactness theorem for surfaces with bounded integral curvature, Journal of the Institute of Mathematics of Jussieu, Volume 19 (2020) no. 2, pp. 597-645 | DOI:10.1017/s1474748018000154 | Zbl:1436.53025
  • Mikeš, J.; Hinterleitner, I.; Guseva, N. I. Geodesic maps “in the large” of Ricci-flat spaces with n complete geodesic lines, Mathematical Notes, Volume 108 (2020) no. 2, pp. 292-296 | DOI:10.1134/s0001434620070317 | Zbl:1467.53023
  • Hirica, Iulia; Udriste, Constantin; Pripoae, Gabriel; Tevy, Ionel Least Squares Approximation of Flatness on Riemannian Manifolds, Mathematics, Volume 8 (2020) no. 10, p. 1757 | DOI:10.3390/math8101757
  • Lassas, Matti; Liimatainen, Tony; Salo, Mikko The Poisson embedding approach to the Calderón problem, Mathematische Annalen, Volume 377 (2020) no. 1-2, pp. 19-67 | DOI:10.1007/s00208-019-01818-3 | Zbl:1442.35138
  • Reintjes, Moritz; Temple, Blake How to smooth a crinkled map of space-time: Uhlenbeck compactness for L connections and optimal regularity for general relativistic shock waves by the Reintjes-Temple equations, Proceedings of the Royal Society of London. A. Mathematical, Physical and Engineering Sciences, Volume 476 (2020) no. 2241, p. 22 (Id/No 20200177) | DOI:10.1098/rspa.2020.0177 | Zbl:1472.35377
  • Caponio, Erasmo; Masiello, Antonio On the Analyticity of Static Solutions of a Field Equation in Finsler Gravity, Universe, Volume 6 (2020) no. 4, p. 59 | DOI:10.3390/universe6040059
  • Микеш, Йозеф; Mikes, Josef; Гинтерлейтнер, Ирена; Hinterleitner, Irena; Гусева, Надежда Ивановна; Guseva, Nadezhda Ivanovna Геодезические отображения "в целом" Риччи-плоских пространств с n полными геодезическими линиями, Математические заметки, Volume 108 (2020) no. 2, p. 306 | DOI:10.4213/mzm12808
  • Grant, James D. E.; Kunzinger, Michael; Sämann, Clemens Inextendibility of spacetimes and Lorentzian length spaces, Annals of Global Analysis and Geometry, Volume 55 (2019) no. 1, pp. 133-147 | DOI:10.1007/s10455-018-9637-x | Zbl:1416.53042
  • Caponio, Erasmo; Masiello, Antonio Harmonic coordinates for the nonlinear Finsler Laplacian and some regularity results for Berwald metrics, Axioms, Volume 8 (2019) no. 3, p. 11 (Id/No 83) | DOI:10.3390/axioms8030083 | Zbl:1432.53024
  • Wang, Fang Dirichlet-to-Neumann map for Poincaré-Einstein metrics in even dimensions, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 1, p. 42 (Id/No 9) | DOI:10.1007/s00526-018-1450-7 | Zbl:1404.58037
  • Mikeš et al., Josef Differential Geometry of Special Mappings, 2019 | DOI:10.5507/prf.19.24455358
  • Mikeš et al., Josef Differential Geometry of Special Mappings, 2019 | DOI:10.5507/prf.19.24455365
  • Beltrán, Carlos; Corral, Nuria; del Rey, Juan G. Criado Discrete and continuous Green energy on compact manifolds, Journal of Approximation Theory, Volume 237 (2019), pp. 160-185 | DOI:10.1016/j.jat.2018.09.004 | Zbl:1402.31005
  • Mikeš, Josef; Hinterleitner, Irena; Guseva, Nadezda There Are No Conformal Einstein Rescalings of Pseudo-Riemannian Einstein Spaces with n Complete Light-Like Geodesics, Mathematics, Volume 7 (2019) no. 9, p. 801 | DOI:10.3390/math7090801
  • Lê, Hông Vân; Schwachhöfer, Lorenz Lagrangian submanifolds in strict nearly Kähler 6-manifolds, Osaka Journal of Mathematics, Volume 56 (2019) no. 3, pp. 601-629 | Zbl:1427.53097
  • Jin, Xiaoshang Boundary regularity for asymptotically hyperbolic metrics with smooth Weyl curvature, Pacific Journal of Mathematics, Volume 301 (2019) no. 2, pp. 467-487 | DOI:10.2140/pjm.2019.301.467 | Zbl:1434.53039
  • Costa, João L.; Natário, José Elastic shocks in relativistic rigid rods and balls, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 475 (2019) no. 2225, p. 20180858 | DOI:10.1098/rspa.2018.0858
  • Chen, Yuanlong; Smith, Hart F. Dispersive estimates for the wave equation on Riemannian manifolds of bounded curvature, Pure and Applied Analysis, Volume 1 (2019) no. 1, pp. 101-148 | DOI:10.2140/paa.2019.1.101 | Zbl:1410.58011
  • Huang, Shaochuang A note on existence of exhaustion functions and its applications, The Journal of Geometric Analysis, Volume 29 (2019) no. 2, pp. 1649-1659 | DOI:10.1007/s12220-018-0055-x | Zbl:1416.53037
  • Lin, Chen-Yun; Wu, Hau-Tieng Embeddings of Riemannian manifolds with finite eigenvector fields of connection Laplacian, Calculus of Variations and Partial Differential Equations, Volume 57 (2018) no. 5, p. 39 (Id/No 126) | DOI:10.1007/s00526-018-1401-3 | Zbl:1400.53026
  • Choi, Young-Jun Variation of Kähler-Einstein Metrics on Pseudoconvex Domains, Geometric Complex Analysis, Volume 246 (2018), p. 85 | DOI:10.1007/978-981-13-1672-2_7
  • Ge, Huabin; Jiang, Wenshuai Regularity and compactness of harmonic-Einstein equations, Mathematische Annalen, Volume 370 (2018) no. 3-4, pp. 937-962 | DOI:10.1007/s00208-017-1523-5 | Zbl:1390.53029
  • Delay, Erwann Lp almost conformal isometries of sub-semi-Riemannian metrics and solvability of a Ricci equation, Proceedings of the American Mathematical Society, Volume 146 (2018) no. 8, pp. 3499-3507 | DOI:10.1090/proc/13898 | Zbl:1393.53024
  • Csikós, Balázs; Horváth, Márton Harmonic manifolds and tubes, The Journal of Geometric Analysis, Volume 28 (2018) no. 4, pp. 3458-3476 | DOI:10.1007/s12220-017-9965-2 | Zbl:1406.53052
  • Jin, Xiao Shang An extension of Weyl Schouten theorem for Lipschitz and H2 manifolds, Acta Mathematica Sinica. English Series, Volume 33 (2017) no. 7, pp. 926-932 | DOI:10.1007/s10114-017-6479-6 | Zbl:1372.53018
  • Roos, Saskia Eigenvalue pinching on spinc manifolds, Journal of Geometry and Physics, Volume 112 (2017), pp. 59-73 | DOI:10.1016/j.geomphys.2016.11.006 | Zbl:1360.53053
  • Jost, Jürgen Chapter 9 Harmonic Maps Between Riemannian Manifolds, Riemannian Geometry and Geometric Analysis (2017), p. 489 | DOI:10.1007/978-3-319-61860-9_10
  • Ru, Qiang A nonexistence result for a nonlinear wave equation with damping on a Riemannian manifold, Boundary Value Problems, Volume 2016 (2016), p. 10 (Id/No 198) | DOI:10.1186/s13661-016-0705-5 | Zbl:1368.35185
  • Portegies, Jacobus W. Embeddings of Riemannian manifolds with heat kernels and eigenfunctions, Communications on Pure and Applied Mathematics, Volume 69 (2016) no. 3, pp. 478-518 | DOI:10.1002/cpa.21565 | Zbl:1341.58022
  • Liimatainen, Tony; Salo, Mikko Local Gauge Conditions for Ellipticity in Conformal Geometry, International Mathematics Research Notices, Volume 2016 (2016) no. 13, p. 4058 | DOI:10.1093/imrn/rnv255
  • Bosi, Roberta; Kurylev, Yaroslav; Lassas, Matti Stability of the unique continuation for the wave operator via Tataru inequality and applications, Journal of Differential Equations, Volume 260 (2016) no. 8, pp. 6451-6492 | DOI:10.1016/j.jde.2015.12.043 | Zbl:1339.35069
  • Yan, Weiping The motion of closed hypersurfaces in the central force fields, Journal of Differential Equations, Volume 261 (2016) no. 3, pp. 1973-2005 | DOI:10.1016/j.jde.2016.04.020 | Zbl:1350.53088
  • Csikós, Balázs; Horváth, Márton Harmonic manifolds and the volume of tubes about curves, Journal of the London Mathematical Society. Second Series, Volume 94 (2016) no. 1, pp. 141-160 | DOI:10.1112/jlms/jdw027 | Zbl:1354.53061
  • Lassas, Matti; Oksanen, Lauri; Yang, Yang Determination of the spacetime from local time measurements, Mathematische Annalen, Volume 365 (2016) no. 1-2, pp. 271-307 | DOI:10.1007/s00208-015-1286-9 | Zbl:1341.83004
  • Chow, Bennett; Lu, Peng On κ-noncollapsed complete noncompact shrinking gradient Ricci solitons which split at infinity, Mathematische Annalen, Volume 366 (2016) no. 3-4, pp. 1195-1206 | DOI:10.1007/s00208-016-1363-8 | Zbl:1355.53040
  • Petersen, Peter Convergence, Riemannian Geometry, Volume 171 (2016), p. 395 | DOI:10.1007/978-3-319-26654-1_11
  • Li, Yuxiang Some remarks on Willmore surfaces embedded in R3, The Journal of Geometric Analysis, Volume 26 (2016) no. 3, pp. 2411-2424 | DOI:10.1007/s12220-015-9631-5 | Zbl:1347.53008
  • LeBrun, Claude Einstein metrics, harmonic forms, and symplectic four-manifolds, Annals of Global Analysis and Geometry, Volume 48 (2015) no. 1, pp. 75-85 | DOI:10.1007/s10455-015-9458-0 | Zbl:1323.53050
  • LeBrun, Claude The Einstein-Maxwell equations, Kähler metrics, and Hermitian geometry, Journal of Geometry and Physics, Volume 91 (2015), pp. 163-171 | DOI:10.1016/j.geomphys.2015.01.009 | Zbl:1318.53033
  • Stepanov, S. E.; Shandra, I. G.; Mikeš, J. Harmonic and projective diffeomorphisms, Journal of Mathematical Sciences (New York), Volume 207 (2015) no. 4, pp. 658-668 | DOI:10.1007/s10958-015-2388-3 | Zbl:1323.53068
  • Lebrun, Claude Edges, orbifolds, and Seiberg-Witten theory, Journal of the Mathematical Society of Japan, Volume 67 (2015) no. 3, pp. 979-1021 | DOI:10.2969/jmsj/06730979 | Zbl:1328.53054
  • Choi, Young-Jun Variations of Kähler-Einstein metrics on strongly pseudoconvex domains, Mathematische Annalen, Volume 362 (2015) no. 1-2, pp. 121-146 | DOI:10.1007/s00208-014-1109-4 | Zbl:1325.32026
  • Choi, Young-Jun A study of variations of pseudoconvex domains via Kähler-Einstein metrics, Mathematische Zeitschrift, Volume 281 (2015) no. 1-2, pp. 299-314 | DOI:10.1007/s00209-015-1484-x | Zbl:1329.32011
  • Minguzzi, E. Convex neighborhoods for Lipschitz connections and sprays, Monatshefte für Mathematik, Volume 177 (2015) no. 4, pp. 569-625 | DOI:10.1007/s00605-014-0699-y | Zbl:1330.53021
  • Taylor, Michael Wave decay on manifolds with bounded Ricci tensor, and related estimates, The Journal of Geometric Analysis, Volume 25 (2015) no. 2, pp. 1018-1044 | DOI:10.1007/s12220-013-9454-1 | Zbl:1330.35043
  • Bates, Jonathan The embedding dimension of Laplacian eigenfunction maps, Applied and Computational Harmonic Analysis, Volume 37 (2014) no. 3, pp. 516-530 | DOI:10.1016/j.acha.2014.03.002 | Zbl:1304.58016
  • Hempel, Rainer; Post, Olaf; Weder, Ricardo On open scattering channels for manifolds with ends, Journal of Functional Analysis, Volume 266 (2014) no. 9, pp. 5526-5583 | DOI:10.1016/j.jfa.2014.01.025 | Zbl:1298.35129
  • Barad, Gefry Differential Geometry Techniques in the Black-scholes Option Pricing; Theoretical Results and Approximations, Procedia Economics and Finance, Volume 8 (2014), p. 48 | DOI:10.1016/s2212-5671(14)00061-6
  • Ammann, Bernd; Moroianu, Andrei; Moroianu, Sergiu The Cauchy problems for Einstein metrics and parallel spinors, Communications in Mathematical Physics, Volume 320 (2013) no. 1, pp. 173-198 | DOI:10.1007/s00220-013-1714-1 | Zbl:1271.53048
  • Gicquaud, Romain Conformal Compactification of Asymptotically Locally Hyperbolic Metrics II: Weakly ALH Metrics, Communications in Partial Differential Equations, Volume 38 (2013) no. 8, p. 1313 | DOI:10.1080/03605302.2013.795966
  • Vargas, Andrés Elliptic PDEs and smoothness of weakly Einstein metrics of Hölder regularity, Geometric and Topological Methods for Quantum Field Theory (2013), p. 340 | DOI:10.1017/cbo9781139208642.011
  • Xu, Yiyan Regularity for the harmonic-Einstein equation, Advances in Mathematics, Volume 231 (2012) no. 2, pp. 680-708 | DOI:10.1016/j.aim.2012.05.015 | Zbl:1260.53056
  • Weiss, Hartmut; Witt, Frederik Energy functionals and soliton equations for G2-forms, Annals of Global Analysis and Geometry, Volume 42 (2012) no. 4, pp. 585-610 | DOI:10.1007/s10455-012-9328-y | Zbl:1311.53056
  • Podestà, Fabio; Spiro, Andrea Six-dimensional nearly Kähler manifolds of cohomogeneity one. II, Communications in Mathematical Physics, Volume 312 (2012) no. 2, pp. 477-500 | DOI:10.1007/s00220-012-1482-3 | Zbl:1262.53062
  • Arias-Marco, Teresa; Schueth, Dorothee Local symmetry of harmonic spaces as determined by the spectra of small geodesic spheres, Geometric and Functional Analysis. GAFA, Volume 22 (2012) no. 1, pp. 1-21 | DOI:10.1007/s00039-012-0146-y | Zbl:1246.53050
  • Ache, Antonio G.; Viaclovsky, Jeff A. Obstruction-flat asymptotically locally Euclidean metrics, Geometric and Functional Analysis. GAFA, Volume 22 (2012) no. 4, pp. 832-877 | DOI:10.1007/s00039-012-0163-x | Zbl:1255.53027
  • Wong, Willie Wai-Yeung; Yu, Pin On Strong Unique Continuation of Coupled Einstein Metrics, International Mathematics Research Notices, Volume 2012 (2012) no. 3, p. 544 | DOI:10.1093/imrn/rnr038
  • Mcinnes, Brett Universality of the holographic angular momentum cutoff, Nuclear Physics. B, Volume 864 (2012) no. 3, pp. 722-744 | DOI:10.1016/j.nuclphysb.2012.07.013 | Zbl:1262.83033
  • Kim, Jungwook; Hanna, James A.; Byun, Myunghwan; Santangelo, Christian D.; Hayward, Ryan C. Designing Responsive Buckled Surfaces by Halftone Gel Lithography, Science, Volume 335 (2012) no. 6073, p. 1201 | DOI:10.1126/science.1215309
  • Chen, Xiuxiong; Weber, Brian Moduli spaces of critical Riemannian metrics with Ln2 norm curvature bounds, Advances in Mathematics, Volume 226 (2011) no. 2, pp. 1307-1330 | DOI:10.1016/j.aim.2010.08.007 | Zbl:1205.53074
  • Gayet, Damien; Witt, Frederik Deformations of associative submanifolds with boundary, Advances in Mathematics, Volume 226 (2011) no. 3, pp. 2351-2370 | DOI:10.1016/j.aim.2010.09.014 | Zbl:1209.53040
  • Dancer, Andrew S.; Wang, McKenzie Y. On Ricci solitons of cohomogeneity one, Annals of Global Analysis and Geometry, Volume 39 (2011) no. 3, pp. 259-292 | DOI:10.1007/s10455-010-9233-1 | Zbl:1215.53040
  • Weber, Brian Convergence of Compact Ricci Solitons, International Mathematics Research Notices, Volume 2011 (2011) no. 1, p. 96 | DOI:10.1093/imrn/rnq055
  • Bahuaud, Eric; Gicquaud, Romain Conformal compactification of asymptotically locally hyperbolic metrics, The Journal of Geometric Analysis, Volume 21 (2011) no. 4, pp. 1085-1118 | DOI:10.1007/s12220-010-9179-3 | Zbl:1259.53038
  • Streets, Jeffrey; Tian, Gang Hermitian curvature flow, Journal of the European Mathematical Society (JEMS), Volume 13 (2011) no. 3, pp. 601-634 | DOI:10.4171/jems/262 | Zbl:1214.53055
  • Li, Ye Smoothing Riemannian metrics with bounded Ricci curvatures in dimension four, Advances in Mathematics, Volume 223 (2010) no. 6, pp. 1924-1957 | DOI:10.1016/j.aim.2009.10.014 | Zbl:1188.53032
  • Geiges, Hansjörg; Pérez, Jesús Gonzalo A homogeneous Gibbons-Hawking ansatz and Blaschke products, Advances in Mathematics, Volume 225 (2010) no. 5, pp. 2598-2615 | DOI:10.1016/j.aim.2010.05.006 | Zbl:1203.53042
  • Reidegeld, Frank Special cohomogeneity-one metrics with Q1,1,1 or M1,1,0 as the principal orbit, Journal of Geometry and Physics, Volume 60 (2010) no. 9, pp. 1069-1088 | DOI:10.1016/j.geomphys.2010.03.006 | Zbl:1207.53059
  • Cheeger, Jeff Structure theory and convergence in Riemannian geometry, Milan Journal of Mathematics, Volume 78 (2010) no. 1, pp. 221-264 | DOI:10.1007/s00032-010-0117-4 | Zbl:1205.53034
  • Loubeau, Eric; Ou, Ye-Lin Biharmonic maps and morphisms from conformal mappings, Tôhoku Mathematical Journal. Second Series, Volume 62 (2010) no. 1, pp. 55-73 | DOI:10.2748/tmj/1270041027 | Zbl:1202.53061
  • Streets, Jeffrey Asymptotic curvature decay and removal of singularities of Bach-flat metrics, Transactions of the American Mathematical Society, Volume 362 (2010) no. 3, pp. 1301-1324 | DOI:10.1090/s0002-9947-09-04960-5 | Zbl:1220.53050
  • Dexing, Kong; Kefeng, Liu; Zenggui, Wang Hyperbolic mean curvature flow: evolution of plane curves, Acta Mathematica Scientia, Volume 29 (2009) no. 3, p. 493 | DOI:10.1016/s0252-9602(09)60049-7
  • He, Chun-Lei; Kong, De-Xing; Liu, Kefeng Hyperbolic mean curvature flow, Journal of Differential Equations, Volume 246 (2009) no. 1, pp. 373-390 | DOI:10.1016/j.jde.2008.06.026 | Zbl:1159.53024
  • Kong, De-Xing; Wang, Zeng-Gui Formation of singularities in the motion of plane curves under hyperbolic mean curvature flow, Journal of Differential Equations, Volume 247 (2009) no. 6, pp. 1694-1719 | DOI:10.1016/j.jde.2009.04.016 | Zbl:1195.53093
  • Chen, Bing-Long; LeFloch, Philippe G. Local foliations and optimal regularity of Einstein spacetimes, Journal of Geometry and Physics, Volume 59 (2009) no. 7, pp. 913-941 | DOI:10.1016/j.geomphys.2009.04.002 | Zbl:1179.53069
  • Chen, Bing-Long; LeFloch, Philippe G. Injectivity radius of Lorentzian manifolds, Communications in Mathematical Physics, Volume 278 (2008) no. 3, pp. 679-713 | DOI:10.1007/s00220-008-0412-x | Zbl:1156.53040
  • Helliwell, Dylan William Boundary Regularity for Conformally Compact Einstein Metrics in Even Dimensions, Communications in Partial Differential Equations, Volume 33 (2008) no. 5, p. 842 | DOI:10.1080/03605300701743772
  • Reidegeld, Frank Spin(7)-manifolds of cohomogeneity one, Dortmund: TU Dortmund, Fakultät für Mathematik (Diss.), 2008 | Zbl:1335.53002
  • LeFloch, Philippe G. Injectivity radius and optimal regularity of Lorentzian manifolds with bounded curvature, Séminaire de théorie spectrale et géométrie, Volume 26 (2008), p. 77 | DOI:10.5802/tsg.261
  • Cao, Huai-Dong; Sesum, N. A compactness result for Kähler Ricci solitons, Advances in Mathematics, Volume 211 (2007) no. 2, pp. 794-818 | DOI:10.1016/j.aim.2006.09.011 | Zbl:1127.53055
  • Hansen, Glen; Zardecki, Andrew Unstructured surface mesh adaptation using the Laplace-Beltrami target metric approach, Journal of Computational Physics, Volume 225 (2007) no. 1, pp. 165-182 | DOI:10.1016/j.jcp.2006.11.033 | Zbl:1122.65123
  • Listing, Mario Conformal Einstein spaces in N-dimensions. II, Journal of Geometry and Physics, Volume 56 (2006) no. 3, pp. 386-404 | DOI:10.1016/j.geomphys.2005.02.008 | Zbl:1089.53030
  • Taylor, Michael Existence and regularity of isometries, Transactions of the American Mathematical Society, Volume 358 (2006) no. 6, pp. 2415-2423 | DOI:10.1090/s0002-9947-06-04090-6 | Zbl:1156.53310
  • Tian, Gang; Viaclovsky, Jeff Moduli spaces of critical Riemannian metrics in dimension four, Advances in Mathematics, Volume 196 (2005) no. 2, pp. 346-372 | DOI:10.1016/j.aim.2004.09.004 | Zbl:1252.53045
  • Kühnel, W.; Rademacher, H. -B. Conformal Geometry of Gravitational Plane Waves, Geometriae Dedicata, Volume 109 (2004) no. 1, p. 175 | DOI:10.1007/s10711-004-2453-4
  • Katchalov, A.; Kurylev, Y.; Lassas, M. Energy Measurements and Equivalence of Boundary Data for Inverse Problems on Non-Compact Manifolds, Geometric Methods in Inverse Problems and PDE Control, Volume 137 (2004), p. 183 | DOI:10.1007/978-1-4684-9375-7_6
  • Anderson, Michael; Katsuda, Atsushi; Kurylev, Yaroslav; Lassas, Matti; Taylor, Michael Boundary regularity for the Ricci equation, geometric convergence, and Gel'fand's inverse boundary problem, Inventiones Mathematicae, Volume 158 (2004) no. 2, pp. 261-321 | DOI:10.1007/s00222-004-0371-6 | Zbl:1177.35245
  • Anderson, Michael T. Cheeger-Gromov Theory and Applications to General Relativity, The Einstein Equations and the Large Scale Behavior of Gravitational Fields (2004), p. 347 | DOI:10.1007/978-3-0348-7953-8_10
  • Anderson, Michael; Katsuda, Atsushi; Kurylev, Yaroslav; Lassas, Matti; Taylor, Michael Metric tensor estimates, geometric convergence, and inverse boundary problems, Electronic Research Announcements of the American Mathematical Society, Volume 9 (2003), pp. 69-79 | DOI:10.1090/s1079-6762-03-00113-6 | Zbl:1071.53525
  • Baird, Paul; Wood, John C. Harmonic Morphisms Between Riemannian Manifolds, 2003 | DOI:10.1093/acprof:oso/9780198503620.001.0001
  • Baird, Paul; Wood, John C. Fundamental properties of harmonic morphisms, Harmonic Morphisms Between Riemannian Manifolds (2003), p. 106 | DOI:10.1093/acprof:oso/9780198503620.003.0004
  • Baird, Paul; Wood, John C. Harmonic morphisms defined by polynomials, Harmonic Morphisms Between Riemannian Manifolds (2003), p. 141 | DOI:10.1093/acprof:oso/9780198503620.003.0005
  • Baird, Paul; Wood, John C. Mini-twistor theory on three-dimensional space forms, Harmonic Morphisms Between Riemannian Manifolds (2003), p. 175 | DOI:10.1093/acprof:oso/9780198503620.003.0006
  • Baird, Paul; Wood, John C. Riemannian manifolds and conformality, Harmonic Morphisms Between Riemannian Manifolds (2003), p. 25 | DOI:10.1093/acprof:oso/9780198503620.003.0002
  • Baird, Paul; Wood, John C. Multivalued harmonic morphisms, Harmonic Morphisms Between Riemannian Manifolds (2003), p. 273 | DOI:10.1093/acprof:oso/9780198503620.003.0009
  • Baird, Paul; Wood, John C. Harmonic morphisms from compact 3-manifolds, Harmonic Morphisms Between Riemannian Manifolds (2003), p. 295 | DOI:10.1093/acprof:oso/9780198503620.003.0010
  • Baird, Paul; Wood, John C. Complex-valued harmonic morphisms on three-dimensional Euclidean space, Harmonic Morphisms Between Riemannian Manifolds (2003), p. 3 | DOI:10.1093/acprof:oso/9780198503620.003.0001
  • Baird, Paul; Wood, John C. Curvature considerations, Harmonic Morphisms Between Riemannian Manifolds (2003), p. 319 | DOI:10.1093/acprof:oso/9780198503620.003.0011
  • Baird, Paul; Wood, John C. Harmonic morphisms with one-dimensional fibres, Harmonic Morphisms Between Riemannian Manifolds (2003), p. 352 | DOI:10.1093/acprof:oso/9780198503620.003.0012
  • Baird, Paul; Wood, John C. Reduction techniques, Harmonic Morphisms Between Riemannian Manifolds (2003), p. 392 | DOI:10.1093/acprof:oso/9780198503620.003.0013
  • Appendix, Harmonic Morphisms Between Riemannian Manifolds (2003), p. 456 | DOI:10.1093/acprof:oso/9780198503620.005.0001
  • Baird, Paul; Wood, John C. Harmonic mappings between Riemannian manifolds, Harmonic Morphisms Between Riemannian Manifolds (2003), p. 65 | DOI:10.1093/acprof:oso/9780198503620.003.0003
  • LONDON MATHEMATICAL SOCIETY MONOGRAPHS NEW SERIES, Harmonic Morphisms Between Riemannian Manifolds (2003), p. ii | DOI:10.1093/acprof:oso/9780198503620.002.0002
  • Copyright Page, Harmonic Morphisms Between Riemannian Manifolds (2003), p. iv | DOI:10.1093/acprof:oso/9780198503620.002.0004
  • Dedication, Harmonic Morphisms Between Riemannian Manifolds (2003), p. v | DOI:10.1093/acprof:oso/9780198503620.002.0005
  • Introduction, Harmonic Morphisms Between Riemannian Manifolds (2003), p. xi | DOI:10.1093/acprof:oso/9780198503620.002.0007
  • Jelonek, Włodzimierz Compact Kähler surfaces with harmonic anti-self-dual Weyl tensor., Differential Geometry and its Applications, Volume 16 (2002) no. 3, pp. 267-276 | DOI:10.1016/s0926-2245(02)00076-1 | Zbl:1037.53028
  • Derdzinski, Andrzej Einstein Metrics in Dimension Four, Volume 1 (2000), p. 419 | DOI:10.1016/s1874-5741(00)80007-2
  • Eschenburg, J.-H.; Wang, McKenzie Y. The initial value problem for cohomogeneity one Einstein metrics, The Journal of Geometric Analysis, Volume 10 (2000) no. 1, pp. 109-137 | DOI:10.1007/bf02921808 | Zbl:0992.53033
  • Petersen, Peter Aspects of global Riemannian geometry, Bulletin of the American Mathematical Society. New Series, Volume 36 (1999) no. 3, pp. 297-344 | DOI:10.1090/s0273-0979-99-00787-9 | Zbl:0961.53019
  • McInnes, Brett Obtaining holonomy from curvature, Journal of Physics A: Mathematical and General, Volume 30 (1997) no. 2, p. 661 | DOI:10.1088/0305-4470/30/2/026
  • KÔZAKI, Masanori ON THE ASYMPTOTIC INDEPENDENCE FOR DIFFUSION PROCESSES ON RIEMANNIAN MANIFOLDS, Kyushu Journal of Mathematics, Volume 51 (1997) no. 1, p. 195 | DOI:10.2206/kyushujm.51.195
  • Mao, Yiping A converse of the Gelfand theorem, Proceedings of the American Mathematical Society, Volume 125 (1997) no. 9, pp. 2699-2702 | DOI:10.1090/s0002-9939-97-03927-0 | Zbl:0884.53038
  • Taylor, Michael E. Microlocal Analysis on Morrey Spaces, Singularities and Oscillations, Volume 91 (1997), p. 97 | DOI:10.1007/978-1-4612-1972-9_6
  • Miguel, A. San; Vicente, F. Quasi-linear coordinates in general relativity, Il Nuovo Cimento B Series 11, Volume 111 (1996) no. 1, p. 39 | DOI:10.1007/bf02726199
  • Berndt, Jürgen; Prüfer, Friedbert; Vanhecke, Lieven Geodesic spheres and two-point homogeneous spaces, Israel Journal of Mathematics, Volume 93 (1996), pp. 373-385 | DOI:10.1007/bf02761113 | Zbl:0849.53012
  • Taylor, Michael E. Nonlinear Elliptic Equations, Partial Differential Equations III, Volume 117 (1996), p. 89 | DOI:10.1007/978-1-4757-4190-2_2
  • Kowalski, Oldřich; Prüfer, Friedbert; Vanhecke, Lieven D’Atri Spaces, Topics in Geometry (1996), p. 241 | DOI:10.1007/978-1-4612-2432-7_9
  • Engliš, Miroslav Berezin quantization and reproducing kernels on complex domains, Transactions of the American Mathematical Society, Volume 348 (1996) no. 2, pp. 411-479 | DOI:10.1090/s0002-9947-96-01551-6 | Zbl:0842.46053
  • Bel, Lluís; Llosa, Josep “Meta”-rigid motions and frames of reference, General Relativity and Gravitation, Volume 27 (1995) no. 10, p. 1089 | DOI:10.1007/bf02148649
  • Rosu, H. S 1×S 2 as a bag membrane and its einstein-weyl geometry, Il Nuovo Cimento A, Volume 107 (1994) no. 9, p. 1543 | DOI:10.1007/bf02780688
  • Cai, Mingliang Rigidity of manifolds with large volume, Mathematische Zeitschrift, Volume 213 (1993) no. 1, pp. 17-31 | DOI:10.1007/bf03025705 | Zbl:0806.53036
  • Pacelli Bessa, Gregório Differentiable sphere theorems for Ricci curvature, Mathematische Zeitschrift, Volume 214 (1993) no. 2, pp. 245-259 | DOI:10.1007/bf02572402 | Zbl:0844.53028
  • Ye, Rugang Ricci flow, Einstein metrics and space forms, Transactions of the American Mathematical Society, Volume 338 (1993) no. 2, p. 871 | DOI:10.1090/s0002-9947-1993-1108615-3
  • Ye, Rugang Ricci flow, Einstein metrics and space forms, Transactions of the American Mathematical Society, Volume 338 (1993) no. 2, pp. 871-896 | DOI:10.2307/2154433 | Zbl:0804.53054
  • Kôzaki, Masanori On mean value theorems for small geodesic spheres in Riemannian manifolds, Czechoslovak Mathematical Journal, Volume 42 (1992) no. 3, pp. 519-547 | DOI:10.21136/cmj.1992.128352 | Zbl:0782.53038
  • Anderson, Michael T.; Cheeger, Jeff Cα-compactness for manifolds with Ricci curvature and injectivity radius bounded below, Journal of Differential Geometry, Volume 35 (1992) no. 2 | DOI:10.4310/jdg/1214448075
  • Smith, P. D.; Yang, Deane Removing point singularities of Riemannian manifolds, Transactions of the American Mathematical Society, Volume 333 (1992) no. 1, p. 203 | DOI:10.1090/s0002-9947-1992-1052910-2
  • Smith, P. D.; Yang, Deane Removing point singularities of Riemannian manifolds, Transactions of the American Mathematical Society, Volume 333 (1992) no. 1, pp. 203-219 | DOI:10.2307/2154106 | Zbl:0793.53047
  • Schulz, Friedmar Regularity of locally convex surfaces, Bulletin of the Australian Mathematical Society, Volume 42 (1990) no. 3, p. 487 | DOI:10.1017/s0004972700028653
  • Anderson, Michael T. Convergence and rigidity of manifolds under Ricci curvature bounds, Inventiones Mathematicae, Volume 102 (1990) no. 2, pp. 429-445 | DOI:10.1007/bf01233434 | Zbl:0711.53038
  • DeTurck, Dennis; Goldschmidt, Hubert Regularity theorems in Riemannian geometry. II: Harmonic curvature and the Weyl tensor, Forum Mathematicum, Volume 1 (1989) no. 4, pp. 377-394 | DOI:10.1111/j.1477-8947.2007.151_1.x | Zbl:0727.53025
  • Bando, Shigetoshi; Kasue, Atsushi; Nakajima, Hiraku On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Inventiones Mathematicae, Volume 97 (1989) no. 2, p. 313 | DOI:10.1007/bf01389045
  • Anderson, Michael T. Ricci curvature bounds and Einstein metrics on compact manifolds, Journal of the American Mathematical Society, Volume 2 (1989) no. 3, p. 455 | DOI:10.1090/s0894-0347-1989-0999661-1
  • Anderson, Michael T. Ricci curvature bounds and Einstein metrics on compact manifolds, Journal of the American Mathematical Society, Volume 2 (1989) no. 3, pp. 455-490 | DOI:10.2307/1990939 | Zbl:0694.53045
  • Kôzaki, Masanori; Ogura, Yukio On the independence of exit time and exit position from small geodesic balls for Brownian motion on Riemannian manifolds, Mathematische Zeitschrift, Volume 197 (1988) no. 4, pp. 561-581 | DOI:10.1007/bf01159812 | Zbl:0653.58041
  • Peters, Stefan Convergence of Riemannian manifolds, Compositio Mathematica, Volume 62 (1987), pp. 3-16 | Zbl:0618.53036
  • Grove, Karsten Metric differential geometri, Differential Geometry, Volume 1263 (1987), p. 171 | DOI:10.1007/bfb0078613
  • Bryant, Robert L. Minimal lagrangian submanifolds of Kähler-einstein manifolds, Differential Geometry and Differential Equations, Volume 1255 (1987), p. 1 | DOI:10.1007/bfb0077676
  • Bando, Shigetoshi Real analyticity of solutions of Hamilton's equation, Mathematische Zeitschrift, Volume 195 (1987), pp. 93-97 | DOI:10.1007/bf01161602 | Zbl:0606.58051
  • Sekigawa, K.; Vanhecke, L. Volume-preserving geodesic symmetries on four-dimensional 2-Stein spaces, Kodai Mathematical Journal, Volume 9 (1986), pp. 215-224 | DOI:10.2996/kmj/1138037204 | Zbl:0613.53010
  • Eastwood, Michael G. Complexification, twistor theory, and harmonic maps from Riemann surfaces, Bulletin of the American Mathematical Society. New Series, Volume 11 (1984), pp. 317-328 | DOI:10.1090/s0273-0979-1984-15294-7 | Zbl:0556.53049
  • DeTurck, Dennis M.; Yang, Deane Existence of elastic deformations with prescribed principal strains and triply orthogonal systems, Duke Mathematical Journal, Volume 51 (1984), pp. 243-260 | DOI:10.1215/s0012-7094-84-05114-7 | Zbl:0544.53012
  • Bemelmans, Josef; Min-Oo, Maung; Ruh, Ernst A. Smoothing Riemannian metrics, Mathematische Zeitschrift, Volume 188 (1984), pp. 69-74 | DOI:10.1007/bf01163873 | Zbl:0536.53044
  • Taubes, Clifford Henry Stability in Yang-Mills theories, Communications in Mathematical Physics, Volume 91 (1983), pp. 235-263 | DOI:10.1007/bf01211160 | Zbl:0524.58020
  • DeTurck, Dennis M. The Cauchy problem for Lorentz metrics with prescribed Ricci curvature, Compositio Mathematica, Volume 48 (1983), pp. 327-349 | Zbl:0527.53037
  • Derdzinski, Andrzej Self-dual Kaehler manifolds and Einstein manifolds of dimension four, Compositio Mathematica, Volume 49 (1983), pp. 405-433 | Zbl:0527.53030
  • Koiso, N. Einstein metrics and complex structures, Inventiones Mathematicae, Volume 73 (1983), pp. 71-106 | DOI:10.1007/bf01393826 | Zbl:0515.53040
  • Gasqui, Jacques Sur la résolubilité locale des équations d'Einstein, Compositio Mathematica, Volume 47 (1982), pp. 43-69 | Zbl:0515.53015
  • Koiso, Norihito Hypersurfaces of Einstein manifolds, Annales Scientifiques de l'École Normale Supérieure. Quatrième Série, Volume 14 (1981), pp. 433-443 | DOI:10.24033/asens.1413 | Zbl:0493.53041
  • DeTurck, Dennis M. Existence of metrics with prescribed Ricci curvature: Local theory, Inventiones Mathematicae, Volume 65 (1981), pp. 179-207 | DOI:10.1007/bf01389010 | Zbl:0489.53014
  • DeTurck, Dennis M. The equations of prescribed Ricci curvature, Bulletin of the American Mathematical Society. New Series, Volume 3 (1980), pp. 701-704 | DOI:10.1090/s0273-0979-1980-14800-4 | Zbl:0457.53009

Cité par 202 documents. Sources : Crossref, zbMATH