@article{ASENS_1886_3_3__9_0, author = {Appell, P.}, title = {Sur les fonctions doublement p\'eriodiques de troisi\`eme esp\`ece}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {9--42}, publisher = {Elsevier}, volume = {3e s{\'e}rie, 3}, year = {1886}, doi = {10.24033/asens.272}, language = {fr}, url = {http://www.numdam.org/articles/10.24033/asens.272/} }
TY - JOUR AU - Appell, P. TI - Sur les fonctions doublement périodiques de troisième espèce JO - Annales scientifiques de l'École Normale Supérieure PY - 1886 SP - 9 EP - 42 VL - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.24033/asens.272/ DO - 10.24033/asens.272 LA - fr ID - ASENS_1886_3_3__9_0 ER -
Appell, P. Sur les fonctions doublement périodiques de troisième espèce. Annales scientifiques de l'École Normale Supérieure, Série 3, Tome 3 (1886), pp. 9-42. doi : 10.24033/asens.272. http://www.numdam.org/articles/10.24033/asens.272/
- Inequalities for the
-rank modulo 12 of partitions without repeated odd parts, The Ramanujan Journal, Volume 63 (2024) no. 1, p. 105 | DOI:10.1007/s11139-023-00783-5 -
-modular transformation of the superconformal algebra characters, Theoretical and Mathematical Physics, Volume 217 (2023) no. 2, p. 1640 | DOI:10.1134/s0040577923110028 - Properties of the Appell–Lerch function (I), The Ramanujan Journal, Volume 57 (2022) no. 1, p. 291 | DOI:10.1007/s11139-021-00445-4
- Ranks, cranks for overpartitions and Appell–Lerch sums, The Ramanujan Journal, Volume 57 (2022) no. 2, p. 823 | DOI:10.1007/s11139-021-00403-0
- Identities and inequalities for the
-rank of partitions without repeated odd parts modulo 8, The Ramanujan Journal, Volume 58 (2022) no. 4, p. 1259 | DOI:10.1007/s11139-021-00486-9 - Proof of a conjectural congruence of Chan for Appell–Lerch sums, International Journal of Number Theory, Volume 17 (2021) no. 04, p. 1003 | DOI:10.1142/s1793042121500202
- Arithmetic properties for Appell–Lerch sums, The Ramanujan Journal, Volume 56 (2021) no. 3, p. 763 | DOI:10.1007/s11139-021-00497-6
- Proofs of some conjectures of Chan on Appell–Lerch sums, The Ramanujan Journal, Volume 51 (2020) no. 1, p. 99 | DOI:10.1007/s11139-018-0076-x
- Vafa–Witten Theory and Iterated Integrals of Modular Forms, Communications in Mathematical Physics, Volume 371 (2019) no. 2, p. 787 | DOI:10.1007/s00220-019-03389-5
- Generalizations of some conjectures of Chan on congruences for Appell–Lerch sums, Journal of Mathematical Analysis and Applications, Volume 460 (2018) no. 1, p. 232 | DOI:10.1016/j.jmaa.2017.11.035
- Indefinite theta series and generalized error functions, Selecta Mathematica, Volume 24 (2018) no. 5, p. 3927 | DOI:10.1007/s00029-018-0444-9
- A double-sum Kronecker-type identity, Advances in Applied Mathematics, Volume 82 (2017), p. 155 | DOI:10.1016/j.aam.2016.08.006
- TWO CONGRUENCES FOR APPELL–LERCH SUMS, International Journal of Number Theory, Volume 08 (2012) no. 01, p. 111 | DOI:10.1142/s1793042112500066
- Ramanujan’s 1 ψ 1 summation, Hecke-type double sums, and Appell–Lerch sums, The Ramanujan Journal, Volume 29 (2012) no. 1-3, p. 121 | DOI:10.1007/s11139-012-9379-5
- Indefinite theta series of signature (1,1) from the point of view of homological mirror symmetry, Advances in Mathematics, Volume 196 (2005) no. 1, p. 1 | DOI:10.1016/j.aim.2004.08.005
Cité par 15 documents. Sources : Crossref