@article{ASCFPA_1985__85_3_73_0, author = {Nualart, D. and Sanz, M.}, title = {Malliavin calculus for two-parameter processes}, journal = {Annales scientifiques de l'Universit\'e de Clermont-Ferrand 2. S\'erie Probabilit\'es et applications}, pages = {73--86}, publisher = {UER de Sciences exactes et naturelles de l'Universit\'e de Clermont}, volume = {85}, number = {3}, year = {1985}, mrnumber = {790724}, zbl = {0581.60050}, language = {en}, url = {http://www.numdam.org/item/ASCFPA_1985__85_3_73_0/} }
TY - JOUR AU - Nualart, D. AU - Sanz, M. TI - Malliavin calculus for two-parameter processes JO - Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications PY - 1985 SP - 73 EP - 86 VL - 85 IS - 3 PB - UER de Sciences exactes et naturelles de l'Université de Clermont UR - http://www.numdam.org/item/ASCFPA_1985__85_3_73_0/ LA - en ID - ASCFPA_1985__85_3_73_0 ER -
%0 Journal Article %A Nualart, D. %A Sanz, M. %T Malliavin calculus for two-parameter processes %J Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications %D 1985 %P 73-86 %V 85 %N 3 %I UER de Sciences exactes et naturelles de l'Université de Clermont %U http://www.numdam.org/item/ASCFPA_1985__85_3_73_0/ %G en %F ASCFPA_1985__85_3_73_0
Nualart, D.; Sanz, M. Malliavin calculus for two-parameter processes. Annales scientifiques de l'Université de Clermont-Ferrand 2. Série Probabilités et applications, Tome 85 (1985) no. 3, pp. 73-86. http://www.numdam.org/item/ASCFPA_1985__85_3_73_0/
[1]. Martingales, the Malliavin Calculus and hypoellipticity under general Hörmander's conditions. Z. Wahrsch. verw. Gebiete, pp 469-505. | MR | Zbl
(1981).[2]. Sur une équation différentielle stochastique. CRAS 274, pp 1739-1742. | MR | Zbl
(1972).[3]. Stochastic integrals in the plane. Acta Math. 134, pp 111-183. | MR | Zbl
and (1975).[4]. Stochastic equations of hyperbolic type and a two-parameter Stratonovich calculus. Ann. Probability 10, pp. 451-463. | MR | Zbl
(1982).[5]. Stochastic differential equations and diffusion processes. Amsterdam-Oxford- New York: North-Holland and Tokyo: Kodansha. | MR | Zbl
and (1981).[6]. Stochastic Calculus of variations and hypoelliptic operators. Proceedings of the International Conference on Stoch. differential equations of Kyoto 1976, pp. 195-263 Tokyo: Kimokuniya and New York: Wiley. | MR | Zbl
(1978).[7]. Malliavin Calculus for two-parameter Wiener functionals. Preprint. | MR | Zbl
and (1984).[8]. Derivatives of Wiener functionals and absolute continuity of induced measures. J. Math. Kyoto Univ. 20-2 pp. 263-289. | MR | Zbl
(1980).[9]. The Malliavin Calculus, a functional analytic approach. Journal of Functional Analysis 44, pp.212-257. | MR | Zbl
(1981).[10]. Differentiation formulas for stochastic integrals in the plane. Stochastic Processes and their Applications 6, pp. 339-349. | MR | Zbl
and (1978).