Weighted means in non-archimedean fields
Annales mathématiques Blaise Pascal, Tome 2 (1995) no. 1, pp. 191-200.
@article{AMBP_1995__2_1_191_0,
     author = {Natarajan, P.N.},
     title = {Weighted means in non-archimedean fields},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {191--200},
     publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal},
     volume = {2},
     number = {1},
     year = {1995},
     mrnumber = {1342815},
     zbl = {0836.40003},
     language = {en},
     url = {http://www.numdam.org/item/AMBP_1995__2_1_191_0/}
}
TY  - JOUR
AU  - Natarajan, P.N.
TI  - Weighted means in non-archimedean fields
JO  - Annales mathématiques Blaise Pascal
PY  - 1995
SP  - 191
EP  - 200
VL  - 2
IS  - 1
PB  - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
UR  - http://www.numdam.org/item/AMBP_1995__2_1_191_0/
LA  - en
ID  - AMBP_1995__2_1_191_0
ER  - 
%0 Journal Article
%A Natarajan, P.N.
%T Weighted means in non-archimedean fields
%J Annales mathématiques Blaise Pascal
%D 1995
%P 191-200
%V 2
%N 1
%I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
%U http://www.numdam.org/item/AMBP_1995__2_1_191_0/
%G en
%F AMBP_1995__2_1_191_0
Natarajan, P.N. Weighted means in non-archimedean fields. Annales mathématiques Blaise Pascal, Tome 2 (1995) no. 1, pp. 191-200. http://www.numdam.org/item/AMBP_1995__2_1_191_0/

[1] G. Bachmam, Introduction to p-adic numbers and valuation theory, Academic Press, 1964. | MR | Zbl

[2] G.H. Hardy , Divergent Series, Oxford, 1949. | MR | Zbl

[3] A.F. Monna, Sur le théorème de Banach-Steinhauss, Indag. Math. 25(1963) , 121-131. | MR | Zbl

[4] P.N. Natarajan, Criterion for regular matrices in non-archimedean fields J. Ramanujan Math. Soc. 6 (1991) , 185-195. | MR | Zbl

[5] G.M. Petersen, Regular matrix transformations,Mc Graw-Hill, London, 1966. | MR | Zbl

[6] V.K. Srinivasan, On certain summation processes in the p-adic field, Indag. Math. 27 ( 1965) , 368-374. | MR | Zbl