@article{AIHPC_2006__23_4_439_0, author = {Berti, Massimiliano and Biasco, Luca}, title = {Forced vibrations of wave equations with non-monotone nonlinearities}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {439--474}, publisher = {Elsevier}, volume = {23}, number = {4}, year = {2006}, doi = {10.1016/j.anihpc.2005.05.004}, mrnumber = {2245752}, zbl = {1103.35076}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2005.05.004/} }
TY - JOUR AU - Berti, Massimiliano AU - Biasco, Luca TI - Forced vibrations of wave equations with non-monotone nonlinearities JO - Annales de l'I.H.P. Analyse non linéaire PY - 2006 SP - 439 EP - 474 VL - 23 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2005.05.004/ DO - 10.1016/j.anihpc.2005.05.004 LA - en ID - AIHPC_2006__23_4_439_0 ER -
%0 Journal Article %A Berti, Massimiliano %A Biasco, Luca %T Forced vibrations of wave equations with non-monotone nonlinearities %J Annales de l'I.H.P. Analyse non linéaire %D 2006 %P 439-474 %V 23 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2005.05.004/ %R 10.1016/j.anihpc.2005.05.004 %G en %F AIHPC_2006__23_4_439_0
Berti, Massimiliano; Biasco, Luca. Forced vibrations of wave equations with non-monotone nonlinearities. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 4, pp. 439-474. doi : 10.1016/j.anihpc.2005.05.004. http://www.numdam.org/articles/10.1016/j.anihpc.2005.05.004/
[1] A. Ambrosetti, A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on
[2] Families of periodic solutions of resonant PDEs, J. Nonlinear Sci. 11 (1) (2001) 69-87. | MR | Zbl
, ,[3] Periodic solutions of a wave equation with concave and convex nonlinearities, J. Differential Equations 153 (1) (1999) 121-141. | MR | Zbl
, , ,[4] Periodic solutions of nonlinear wave equations with non-monotone forcing terms, Rend. Mat. Acc. Naz. Lincei, s. 9 16 (2) (2005) 109-116. | MR | Zbl
, ,[5] Periodic solutions of nonlinear wave equations with general nonlinearities, Comm. Math. Phys. 243 (2) (2003) 315-328. | MR | Zbl
, ,[6] Multiplicity of periodic solutions of nonlinear wave equations, Nonlinear Anal. 56 (2004) 1011-1046. | MR | Zbl
, ,[7] M. Berti, P. Bolle, Cantor families of periodic solution for completely resonant wave equations, Preprint SISSA, 2004. | MR
[8] Periodic solutions of nonlinear wave equations, in: Harmonic Analysis and Partial Differential Equations, Chicago Lectures in Math., Univ. Chicago Press, 1999, pp. 69-97. | MR | Zbl
,[9] Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math. 33 (5) (1980) 667-684. | MR | Zbl
, , ,[10] Forced vibrations for a nonlinear wave equation, Comm. Pure Appl. Math. 31 (1) (1978) 1-30. | MR | Zbl
, ,[11] Periodic solutions of a nonlinear wave equation without assumption of monotonicity, Math. Ann. 262 (2) (1983) 273-285. | EuDML | MR | Zbl
,[12] Soluzioni periodiche di equazioni a derivate parziali di tipo iperbolico non lineari, Rend. Sem. Mat. Univ. Padova 40 (1968) 380-401. | EuDML | Numdam | MR | Zbl
, ,[13] Periodic solutions for completely resonant nonlinear wave equations, Comm. Math. Phys. 256 (2005) 437-490. | MR | Zbl
, , ,
[14] On the existence of periodic solutions for the equations
[15] On the range of a wave operator with non-monotone nonlinearity, Math. Nachr. 106 (1982) 327-340. | MR | Zbl
,[16] Periodic solutions of a weakly nonlinear wave equation in one dimension, Czechoslovak Math. J. 19 (94) (1969) 324-342. | EuDML | MR | Zbl
,[17] Periodic solutions of a weakly nonlinear wave equation with an irrational relation of period to interval length, Differentsial'nye Uravneniya 24 (9) (1988) 1599-1607, 1654 (in Russian); Translation in, Differential Equations 24 (9) (1988) 1059-1065, (1989). | MR | Zbl
, ,[18] Periodic solutions of nonlinear hyperbolic partial differential equations, Comm. Pure Appl. Math. 20 (1967) 145-205. | MR | Zbl
,[19] Time periodic solutions of nonlinear wave equations, Manuscripta Math. 5 (1971) 165-194. | EuDML | MR | Zbl
,
[20] Soluzioni periodiche dell’equazione non lineare
[21] Density of the range of potential operators, Proc. Amer. Math. Soc. 83 (2) (1981) 341-344. | MR | Zbl
,Cité par Sources :