Multi-peak bound states for nonlinear Schrödinger equations
Annales de l'I.H.P. Analyse non linéaire, Tome 15 (1998) no. 2, pp. 127-149.
@article{AIHPC_1998__15_2_127_0,
     author = {Del Pino, Manuel and Felmer, Patricio L.},
     title = {Multi-peak bound states for nonlinear {Schr\"odinger} equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {127--149},
     publisher = {Gauthier-Villars},
     volume = {15},
     number = {2},
     year = {1998},
     mrnumber = {1614646},
     zbl = {0901.35023},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1998__15_2_127_0/}
}
TY  - JOUR
AU  - Del Pino, Manuel
AU  - Felmer, Patricio L.
TI  - Multi-peak bound states for nonlinear Schrödinger equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1998
SP  - 127
EP  - 149
VL  - 15
IS  - 2
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPC_1998__15_2_127_0/
LA  - en
ID  - AIHPC_1998__15_2_127_0
ER  - 
%0 Journal Article
%A Del Pino, Manuel
%A Felmer, Patricio L.
%T Multi-peak bound states for nonlinear Schrödinger equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 1998
%P 127-149
%V 15
%N 2
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPC_1998__15_2_127_0/
%G en
%F AIHPC_1998__15_2_127_0
Del Pino, Manuel; Felmer, Patricio L. Multi-peak bound states for nonlinear Schrödinger equations. Annales de l'I.H.P. Analyse non linéaire, Tome 15 (1998) no. 2, pp. 127-149. http://www.numdam.org/item/AIHPC_1998__15_2_127_0/

[1] C.C. Chen and C.S. Lin, Uniqueness of the ground state solutions of Δu + f(u) = 0 in RN, N > 3 . Comm. in P.D.E. 16. Vol. 8-9, 1991, pp. 1549-1572. | MR | Zbl

[2] V. Coti Zelati and P. Rabinowitz, Homoclinic type solutions for semilinear elliptic PDE on RN'. Comm. Pure and Applied Math, Vol. XLV, 1992, pp. 1217-1269. | MR | Zbl

[3] M. Del Pino and P. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains. Calculus of Variations and PDE, Vol. 4, 1996. pp. 121-137. | MR | Zbl

[4] M.J. Esteban and P.L. Lions Existence and non-existence results for semilinear problems in unbounded domains. Proc. Roy. Soc. Edin., Vol. 93A, 1982, pp. 1-14. | MR | Zbl

[5] A. Floer and A. Weinstein, Nonspreading Wave Packets for the Cubic Schrödinger Equation with a Bounded Potential, Journal of Functional analysis, Vol. 69, 1986, pp. 397-408. | MR | Zbl

[6] M.K. Kwong and L. Zhang, Uniqueness of positive solutions of Δu + f(u) = 0 in an annulus Differential and Integral Equations , Vol. 4, 1991, pp. 583-599. | MR | Zbl

[7] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part II Analyse Nonlin., Vol. 1, 1984, pp. 223-283. | Numdam | MR | Zbl

[8] Y.J. Oh, Existence of semi-classical bound states of nonlinear Schrödinger equations with potential on the class (V)a. Comm. Partial Diff., Eq. Vol. 13, 1988, pp. 1499-1519. | Zbl

[9] Y.J. Oh, Corrections to Existence of semi-classical bound states of nonlinear Schrödinger equations with potential on the class (V)a., Comm. Partial Diff. Eq. Vol. 14, 1989, pp. 833-834. | Zbl

[10] Y.J. Oh, On positive multi-lump bound states nonlinear Schrödinger equations under multiple well potential. Comm. Math. Phys., Vol. 131, 1990, pp. 223-253. | MR | Zbl

[111 P. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. angew Math Phys, Vol. 43, 1992, pp. 270-291. | MR | Zbl

[12] G. Spradlin, Ph. D. Thesis University of Wisconsin, 1994.

[13] N. Thandi, Ph. D. Thesis University of Wisconsin, 1995.

[14] X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations. Comm. Math. Phys., Vol. 153, No 2, 1993, pp. 229-244. | MR | Zbl