@article{AIHPC_1990__7_4_259_0, author = {Beir\~ao da Veiga, H.}, title = {The stability of one dimensional stationary flows of compressible viscous fluids}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {259--268}, publisher = {Gauthier-Villars}, volume = {7}, number = {4}, year = {1990}, mrnumber = {1067775}, zbl = {0712.76074}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1990__7_4_259_0/} }
TY - JOUR AU - Beirão da Veiga, H. TI - The stability of one dimensional stationary flows of compressible viscous fluids JO - Annales de l'I.H.P. Analyse non linéaire PY - 1990 SP - 259 EP - 268 VL - 7 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_1990__7_4_259_0/ LA - en ID - AIHPC_1990__7_4_259_0 ER -
%0 Journal Article %A Beirão da Veiga, H. %T The stability of one dimensional stationary flows of compressible viscous fluids %J Annales de l'I.H.P. Analyse non linéaire %D 1990 %P 259-268 %V 7 %N 4 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPC_1990__7_4_259_0/ %G en %F AIHPC_1990__7_4_259_0
Beirão da Veiga, H. The stability of one dimensional stationary flows of compressible viscous fluids. Annales de l'I.H.P. Analyse non linéaire, Tome 7 (1990) no. 4, pp. 259-268. http://www.numdam.org/item/AIHPC_1990__7_4_259_0/
[1] An LP-theory for the n-dimensional, stationary, compressible Navier-Stokes equations, and the incompressible limit for compressible fluids. The equilibrium solutions. Comm. Math. Phys., t. 109, 1987, p. 229-248. | MR | Zbl
,[2]Long time behaviour for one dimensional motion of a general barotropic viscous fluid, Arch. Rat. Mech. Analysis, t. 108, 1989, p. 141-160. | MR | Zbl
,[3]Stabilization of solutions of an initial-boundary value problem for the equations of motion of a barotropic viscous fluid, translation from russian in Diff. Eq., t. 15, 1979, p. 463-467. | Zbl
,[4] Asymptotic behaviour of the density for one-dimensional Navier-Stokes equations, Manuscripta Math., t. 62, 1988, p. 401-416. | MR | Zbl
and ,[5] Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method. Ann. Sci. Norm. Sup. Pisa, 1984, p. 607-647. | Numdam | MR | Zbl
,