@article{AIHPB_1998__34_4_545_0, author = {Cs\'aki, Endre and R\'ev\'esz, P\'al and Rosen, Jay}, title = {Functional laws of the iterated logarithm for local times of recurrent random walks on $Z^2$}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {545--563}, publisher = {Gauthier-Villars}, volume = {34}, number = {4}, year = {1998}, mrnumber = {1632833}, zbl = {0913.60052}, language = {en}, url = {http://www.numdam.org/item/AIHPB_1998__34_4_545_0/} }
TY - JOUR AU - Csáki, Endre AU - Révész, Pál AU - Rosen, Jay TI - Functional laws of the iterated logarithm for local times of recurrent random walks on $Z^2$ JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1998 SP - 545 EP - 563 VL - 34 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPB_1998__34_4_545_0/ LA - en ID - AIHPB_1998__34_4_545_0 ER -
%0 Journal Article %A Csáki, Endre %A Révész, Pál %A Rosen, Jay %T Functional laws of the iterated logarithm for local times of recurrent random walks on $Z^2$ %J Annales de l'I.H.P. Probabilités et statistiques %D 1998 %P 545-563 %V 34 %N 4 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPB_1998__34_4_545_0/ %G en %F AIHPB_1998__34_4_545_0
Csáki, Endre; Révész, Pál; Rosen, Jay. Functional laws of the iterated logarithm for local times of recurrent random walks on $Z^2$. Annales de l'I.H.P. Probabilités et statistiques, Tome 34 (1998) no. 4, pp. 545-563. http://www.numdam.org/item/AIHPB_1998__34_4_545_0/
[1] On the rate of growth of subordinators with slowly varying Laplace exponent, Sem. de Prob. XXIX, Lecture Notes Math, Vol. 1612, Springer-Verlag, Berlin, 1995, pp. 125-132. | Numdam | MR | Zbl
and ,[2] Probability, Society for Industrial and Applied Mathematics, Philadelphia, 1992. | MR | Zbl
,[3] On the occupation time of an iterated process having no local time, Stochastic Process. Appl., Vol. 70, 1997, pp. 199-217. | MR | Zbl
, , and ,[4] Some problems concerning the structure of random walk paths, Acta Math. Acad. Sci. Hung., Vol. 11, 1960, pp. 137-162. | MR | Zbl
and ,[5] Some random series of functions, Cambridge University Press, Cambridge, 1985. | MR | Zbl
,[6] Toward a universal law of the iterated logarithm, Part I, Z. Wahrsch. verw. Gebiete, Vol. 36, 1976, pp. 165-178. | MR | Zbl
,[7] Laws of the iterated logarithm for the local times of recurrent random walks on Z2 and of Levy processes and recurrent random walks in the domain of attraction of Cauchy random variables, Ann. Inst. H. Poincaré Prob. Stat., Vol. 30, 1994, pp. 467-499. | Numdam | MR | Zbl
and ,[8] Laws of the iterated logarithm for the local times of symmetric Levy processes and recurrent random walks, Ann. Probab., Vol. 22, 1994, pp. 626-658. | MR | Zbl
and ,[9] On the maximal distance between two renewal epochs, Stochastic Process. Appl., Vol. 27, 1988, pp. 21-41. | MR | Zbl
and ,