Les groupes d’homotopie du groupe (stabilisé) des opérateurs pseudodifférentiels inversibles d’ordre zéro agissant sur une variété compacte sans bord sont calculés en termes de la -théorie du fibré cosphérique . Du même coup, on montre que le sous-groupe des perturbations compactes inversibles de l’identité est faiblement rétractile dans . Les résultats sont aussi adaptés au cas des opérateurs suspendus. Des applications à la théorie de l’indice et pour le déterminant résiduel de Simon Scott sont aussi données.
The homotopy groups of the (stabilized) group of invertible pseudodifferential operators of order zero acting on a smooth compact manifold are given in terms of the -theory of the cosphere bundle . At the same time, it is shown that the subgroup of invertible compact perturbations of the identity is weakly retractible in . The results are also adapted to the case of suspended operators. This gives applications in index theory and for the residue determinant of Simon Scott.
Mots-clés : opérateurs pseudodifférentiels, groupes d’homotopie, $K$-théorie, déterminant résiduel
@article{AIF_2008__58_1_29_0, author = {Rochon, Fr\'ed\'eric}, title = {Sur la topologie de l{\textquoteright}espace des op\'erateurs pseudodiff\'erentiels inversibles d{\textquoteright}ordre 0}, journal = {Annales de l'Institut Fourier}, pages = {29--62}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {1}, year = {2008}, doi = {10.5802/aif.2343}, zbl = {1154.58014}, mrnumber = {2401215}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.2343/} }
TY - JOUR AU - Rochon, Frédéric TI - Sur la topologie de l’espace des opérateurs pseudodifférentiels inversibles d’ordre 0 JO - Annales de l'Institut Fourier PY - 2008 SP - 29 EP - 62 VL - 58 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2343/ DO - 10.5802/aif.2343 LA - fr ID - AIF_2008__58_1_29_0 ER -
%0 Journal Article %A Rochon, Frédéric %T Sur la topologie de l’espace des opérateurs pseudodifférentiels inversibles d’ordre 0 %J Annales de l'Institut Fourier %D 2008 %P 29-62 %V 58 %N 1 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2343/ %R 10.5802/aif.2343 %G fr %F AIF_2008__58_1_29_0
Rochon, Frédéric. Sur la topologie de l’espace des opérateurs pseudodifférentiels inversibles d’ordre 0. Annales de l'Institut Fourier, Tome 58 (2008) no. 1, pp. 29-62. doi : 10.5802/aif.2343. http://www.numdam.org/articles/10.5802/aif.2343/
[1] K-theory, Benjamin, 1967 | MR | Zbl
[2] Spectral asymmetry and Riemann geometry, I, Math. Proc. Cambridge Philos. Soc, Volume 77 (1975), pp. 43-69 | DOI | MR | Zbl
[3] Spectral asymmetry and Riemann geometry, III, Math. Proc. Cambridge Philos. Soc, Volume 79 (1976), pp. 71-99 | DOI | MR | Zbl
[4] The index of elliptic operators : I, Ann. of Math., Volume 87 (1968), pp. 484-530 | DOI | MR | Zbl
[5] The index of elliptic operators. IV, Ann. of Math. (2), Volume 93 (1971), pp. 119-138 | DOI | MR | Zbl
[6] Differential forms in algebraic topology, Springer-Verlag, Berlin, 1982 no. 82 | MR | Zbl
[7] Determinants of zeroth order operators (2006) (preprint, math.SP/0601743)
[8] The residue of the global function at the origin, Adv. in Math., Volume 40 (1981) no. 3, pp. 290-307 | DOI | MR | Zbl
[9] A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues, Adv. Math., Volume 102 (1985), pp. 184-201 | DOI | Zbl
[10] Geometry of determinants of elliptic operators, Func. Anal. on the Eve of the XXI century, Vol I, Pogress in mathematics, Volume 131 (1994), pp. 173-197 | MR | Zbl
[11] Fredholm theory for degenerate pseudodifferential operators on manifold with fibred boundaries, Comm. Partial Differential Equations, Volume 26 (2001), pp. 233-283 | DOI | MR | Zbl
[12] Homology of pseudodifferential operators on manifolds with fibered cusps, T. Am. Soc., Volume 355 (2003), pp. 3009-3046 | DOI | MR | Zbl
[13] An index formula on manifolds with fibered cusp ends, J. Geom. Analysis, Volume 15 (2005), pp. 261-283 | MR | Zbl
[14] The index of Dirac operators on manifolds with fibred boundary (à paraître dans les Proceedings of the Joint BeNeLuxFra Conference in Mathematics, Ghent, May 20-22, 2005, Bulletin of the Belgian Mathematical Society – Simon Stevin) | Zbl
[15] Relative pairing in cyclic cohomology and divisor flows (2006) (preprint, math.KT/0603500)
[16] Uniqueness of multiplicative determinants on elliptic pseudodifferential operators (à paraître dans les Proceedings of the London Mathematical Society) | Zbl
[17] Pseudodifferential operators on manifolds with fibred boundaries, Asian J. Math., Volume 2 (1999) no. 4, pp. 833-866 | MR | Zbl
[18] Lectures on microlocal analysis (Fall 2005, http ://www-math.mit.edu/ rbm/18.157-F05.html)
[19] The eta invariant and families of pseudodifferential operators, Math. Res. Lett., Volume 2 (1995) no. 5, pp. 541-561 | MR | Zbl
[20] Geometric scattering theory, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[21] Homology of pseudodifferential operators I. Manifold with boundary (Preprint)
[22] Boundaries, eta invariant and the determinant bundle (2006) (preprint, math.DG/0607480)
[23] Index in K-theory of families of fibred cusp operators, K-theory, Volume 37 (2006), pp. 25-104 | DOI | MR | Zbl
[24] Periodicity and the determinant bundle (2006) (math.DG/0606382, à paraître dans Commun. Math. Phys.) | Zbl
[25] Fibered cusp versus d-index theory (à paraître dans Rendiconti del Seminario Matematico della Università di Padova) | Numdam | Zbl
[26] K-theory of suspended pseudo-differential operators, K-theory, Volume 28 (2003), pp. 167-181 | DOI | MR | Zbl
[27] Homology of adiabatic pseudo-differential operators, Nagoya Math. J, Volume 175 (2004), pp. 171-221 | MR | Zbl
[28] An -index theorem for Dirac operators on , Journal of Functional Analysis, Volume 177 (2000), pp. 203-218 | DOI | MR | Zbl
[29] The multiplicative anomaly for determinants of elliptic operators, Duke Math. J., Volume 79 (1995), pp. 723-750 | DOI | MR | Zbl
[30] A Laurent expansion for regularized integrals of holomorphic symbols (preprint, à paraître dans Geom. and Funct. Anal) | Zbl
[31] Bott periodicity for fibred cusp operators, J. Geom. Anal., Volume 15 (2005) no. 4, pp. 685-722 | MR | Zbl
[32] The residue determinant, Comm. Part. Diff. Eqn., Volume 30 (2005), pp. 483-507 | DOI | MR | Zbl
[33] Complex powers of an elliptic operator, (Proc. Sympos. Pure Math., Vol. X) Amer. Math. Soc. (1966), pp. 288-307 | MR | Zbl
[34] The topology of fibre bundles, Princeton University Press, New Jersey, 1999 | MR | Zbl
[35] Spectral asymmetry and zeta functions, Invent. math., Volume 66 (1982), pp. 115-135 | DOI | MR | Zbl
[36] Local invariants of spectral asymmetry, Invent. math., Volume 75 (1984), pp. 143-177 | DOI | MR | Zbl
[37] Non-commutative residue, Chapter I. Fundamentals, K-theory, Arithmetic and Geometry Springer Lecture notes, Volume 1289 (1987), pp. 320-399 | DOI | MR | Zbl
Cité par Sources :