Analytic inversion of adjunction: L2 extension theorems with gain
[L’inversion analytique d’adjonction : théorèmes de prolongement avec gain]
Annales de l'Institut Fourier, Tome 57 (2007) no. 3, pp. 703-718.

Nous établissons des résultats nouveaux sur le prolongement L2 à poids des formes holomorphes de degré maximal avec des valeurs dans un fibré linéaire, d’une hypersurface holomorphe lisse définie par une fonction holomorphe. Les poids que nous employons sont déterminés par certaines fonctions que nous appelons des dénominateurs. Nous donnons une collection d’exemples de ces dénominateurs liés au diviseur défini par la sous-variété.

We establish new results on weighted L2-extension of holomorphic top forms with values in a holomorphic line bundle, from a smooth hypersurface cut out by a holomorphic function. The weights we use are determined by certain functions that we call denominators. We give a collection of examples of these denominators related to the divisor defined by the submanifold.

DOI : 10.5802/aif.2273
Classification : 32A99, 32Q99
Keywords: Ohsawa-Takegoshi-type extension, twisted Bochner-Kodaira technique, denominators
Mot clés : Ohsawa-Takegoshi-type extension, technique de Bochner-Kodaira tordue, dénominateurs
McNeal, Jeffery D. 1 ; Varolin, Dror 2

1 Department of Mathematics 100 mathematics building 231 W. 18th avenue Columbus, Ohio 43210-1174 (USA)
2 Stony Brook University Department of Mathematics Stony Brook NY 11794-3651 (USA)
@article{AIF_2007__57_3_703_0,
     author = {McNeal, Jeffery D. and Varolin, Dror},
     title = {Analytic inversion of adjunction: $L^2$ extension theorems with gain},
     journal = {Annales de l'Institut Fourier},
     pages = {703--718},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {57},
     number = {3},
     year = {2007},
     doi = {10.5802/aif.2273},
     mrnumber = {2336826},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.2273/}
}
TY  - JOUR
AU  - McNeal, Jeffery D.
AU  - Varolin, Dror
TI  - Analytic inversion of adjunction: $L^2$ extension theorems with gain
JO  - Annales de l'Institut Fourier
PY  - 2007
SP  - 703
EP  - 718
VL  - 57
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.2273/
DO  - 10.5802/aif.2273
LA  - en
ID  - AIF_2007__57_3_703_0
ER  - 
%0 Journal Article
%A McNeal, Jeffery D.
%A Varolin, Dror
%T Analytic inversion of adjunction: $L^2$ extension theorems with gain
%J Annales de l'Institut Fourier
%D 2007
%P 703-718
%V 57
%N 3
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.2273/
%R 10.5802/aif.2273
%G en
%F AIF_2007__57_3_703_0
McNeal, Jeffery D.; Varolin, Dror. Analytic inversion of adjunction: $L^2$ extension theorems with gain. Annales de l'Institut Fourier, Tome 57 (2007) no. 3, pp. 703-718. doi : 10.5802/aif.2273. https://www.numdam.org/articles/10.5802/aif.2273/

[1] Berndtsson, B. The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman, Ann. Inst. Fourier (Grenoble), Volume 46 (1996) no. 4, pp. 1083-1094 | DOI | EuDML | Numdam | MR | Zbl

[2] Demailly, J.-P. Multiplier ideal sheaves and analytic methods in algebraic geometry, ICTP Lect. Notes, Volume 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001 School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000) 1–148 | MR | Zbl

[3] Kollár, J. Singularities of pairs, Algebraic geometry – Santa Cruz (1995), pp. 221-287 (Proc. Sympos. Pure Math., 62, Part 1, Amer. Math. Soc., Providence, RI, 1997) | MR | Zbl

[4] Lazarsfeld, R. Positivity in algebraic geometry, I, II, Springer, 2004 | MR | Zbl

[5] McNeal, J. D. On large values of L2 holomorphic functions, Math. Res. Let., Volume 3 (1996), pp. 247-259 | MR | Zbl

[6] Ohsawa, T. On the extension of L2 holomorphic functions. III. Negligible weights, Math. Z., Volume 219 (1995) no. 2, pp. 215-225 | DOI | EuDML | MR | Zbl

[7] Ohsawa, T.; Takegoshi, K. On the extension of L2 holomorphic functions, Math. Z., Volume 195 (1987) no. 2, pp. 197-204 | DOI | EuDML | MR | Zbl

[8] Siu, Y.-T. The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi, Geometric Complex Analysis, Hayama. World Scientific (1996), pp. 577-592 | MR | Zbl

[9] Siu, Y.-T. Invariance of plurigenera, Invent. Math., Volume 134 (1998) no. 3, p. 661-673. | DOI | MR | Zbl

[10] Siu, Y.-T. Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, Complex geometry, Springer-Verlag (2002), pp. 223-277 (Collection of papers dedicated to Hans Grauert) | MR | Zbl

  • Nguyen, Tai; Wang, Xu A Hilbert bundle approach to the sharp strong openness theorem and the Ohsawa-Takegoshi extension theorem, Convex and Complex: Perspectives on Positivity in Geometry, Volume 810 (2025), p. 99 | DOI:10.1090/conm/810/16210
  • GUAN, Qi'an; MI, Zhitong; YUAN, Zheng Guan–Zhou's unified version of optimal L2 extension theorem on weakly pseudoconvex Kähler manifolds, Journal of the Mathematical Society of Japan, Volume 77 (2025) no. 1 | DOI:10.2969/jmsj/91919191
  • Cao, Junyan; Paun, Mihai; Berndtsson, Bo On the Ohsawa–Takegoshi Extension Theorem, The Journal of Geometric Analysis, Volume 34 (2024) no. 1 | DOI:10.1007/s12220-023-01466-9
  • Kim, Dano L2 extension of holomorphic functions for log canonical pairs, Journal de Mathématiques Pures et Appliquées, Volume 177 (2023), p. 198 | DOI:10.1016/j.matpur.2023.06.013
  • Kim, Dano; Seo, Hoseob On L2 extension from singular hypersurfaces, Mathematische Zeitschrift, Volume 303 (2023) no. 4 | DOI:10.1007/s00209-023-03248-z
  • Chan, Tsz; Choi, Young-Jun On an injectivity theorem for log-canonical pairs with analytic adjoint ideal sheaves, Transactions of the American Mathematical Society (2023) | DOI:10.1090/tran/8935
  • YAO, SHA; LI, ZHI; ZHOU, XIANGYU ON THE OPTIMAL EXTENSION THEOREM AND A QUESTION OF OHSAWA, Nagoya Mathematical Journal, Volume 245 (2022), p. 154 | DOI:10.1017/nmj.2020.34
  • Chen, Jian; Rao, Sheng L2 Extension of ¯-Closed Forms on Weakly Pseudoconvex Kähler Manifolds, The Journal of Geometric Analysis, Volume 32 (2022) no. 5 | DOI:10.1007/s12220-022-00886-3
  • Chi, Chen-Yu On the extension of holomorphic adjoint sections from reduced unions of strata of divisors, Mathematische Zeitschrift, Volume 299 (2021) no. 3-4, p. 1789 | DOI:10.1007/s00209-021-02737-3
  • Guan, Qi’an; Zhou, Xiangyu Restriction formula and subadditivity property related to multiplier ideal sheaves, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2020 (2020) no. 769, p. 1 | DOI:10.1515/crelle-2019-0043
  • Zhou, Xiangyu; Zhu, Langfeng Siu’s lemma, optimal L2 extension and applications to twisted pluricanonical sheaves, Mathematische Annalen, Volume 377 (2020) no. 1-2, p. 675 | DOI:10.1007/s00208-018-1783-8
  • Zhou, Xiangyu; Zhu, Langfeng Optimal L2 extension of sections from subvarieties in weakly pseudoconvex manifolds, Pacific Journal of Mathematics, Volume 309 (2020) no. 2, p. 475 | DOI:10.2140/pjm.2020.309.475
  • McNeal, Jeffery D.; Varolin, Dror L2 Extension of ∂̄-closed forms from a hypersurface, Journal d'Analyse Mathématique, Volume 139 (2019) no. 2, p. 421 | DOI:10.1007/s11854-019-0062-2
  • Stevenson, Matthew A non-Archimedean Ohsawa–Takegoshi extension theorem, Mathematische Zeitschrift, Volume 291 (2019) no. 1-2, p. 279 | DOI:10.1007/s00209-018-2083-4
  • Zhou, Xiang Yu; Zhu, Lang Feng Optimal L2 Extension and Siu’s Lemma, Acta Mathematica Sinica, English Series, Volume 34 (2018) no. 8, p. 1289 | DOI:10.1007/s10114-018-7539-2
  • Demailly, Jean-Pierre Extension of Holomorphic Functions and Cohomology Classes from Non Reduced Analytic Subvarieties, Geometric Complex Analysis, Volume 246 (2018), p. 97 | DOI:10.1007/978-981-13-1672-2_8
  • Ohsawa, Takeo L2 Oka–Cartan Theory, L² Approaches in Several Complex Variables (2018), p. 115 | DOI:10.1007/978-4-431-56852-0_3
  • Guan, Qi’An; Zhou, XiangYu Strong openness of multiplier ideal sheaves and optimal L 2 extension, Science China Mathematics, Volume 60 (2017) no. 6, p. 967 | DOI:10.1007/s11425-017-9055-5
  • Guan, Qi'an; Zhou, Xiangyu A solution of an L^2 extension problem with an optimal estimate and applications, Annals of Mathematics (2015), p. 1139 | DOI:10.4007/annals.2015.181.3.6
  • McNeal, Jeffery D.; Varolin, Dror L2 L 2 estimates for the ¯ ∂ ¯ operator, Bulletin of Mathematical Sciences, Volume 5 (2015) no. 2, p. 179 | DOI:10.1007/s13373-015-0068-8
  • Kim, Dano Themes on Non-analytic Singularities of Plurisubharmonic Functions, Complex Analysis and Geometry, Volume 144 (2015), p. 197 | DOI:10.1007/978-4-431-55744-9_14
  • Zhou, Xiangyu A Survey on L 2 Extension Problem, Complex Geometry and Dynamics, Volume 10 (2015), p. 291 | DOI:10.1007/978-3-319-20337-9_13
  • Ohsawa, Takeo Application and simplified proof of a sharp L2 extension theorem, Nagoya Mathematical Journal, Volume 220 (2015), p. 81 | DOI:10.1215/00277630-3335780
  • Guan, Qi’An; Zhou, XiangYu Optimal constant in an L 2 extension problem and a proof of a conjecture of Ohsawa, Science China Mathematics, Volume 58 (2015) no. 1, p. 35 | DOI:10.1007/s11425-014-4946-4
  • Błocki, Zbigniew Cauchy–Riemann meet Monge–Ampère, Bulletin of Mathematical Sciences, Volume 4 (2014) no. 3, p. 433 | DOI:10.1007/s13373-014-0058-2
  • Yi, Li An Ohsawa-Takegoshi theorem on compact Kähler manifolds, Science China Mathematics, Volume 57 (2014) no. 1, p. 9 | DOI:10.1007/s11425-013-4656-3
  • Demailly, Jean-Pierre; Hacon, Christopher D.; Păun, Mihai Extension theorems, non-vanishing and the existence of good minimal models, Acta Mathematica, Volume 210 (2013) no. 2, p. 203 | DOI:10.1007/s11511-013-0094-x
  • Guan, Qiʼan; Zhou, Xiangyu GeneralizedL2extension theorem and a conjecture of Ohsawa, Comptes Rendus. Mathématique, Volume 351 (2013) no. 3-4, p. 111 | DOI:10.1016/j.crma.2013.01.012
  • Ji, Qingchun Division theorems for the Koszul complex, Advances in Mathematics, Volume 231 (2012) no. 5, p. 2450 | DOI:10.1016/j.aim.2012.07.028
  • Pali, Nefton On the L 2-extension of twisted holomorphic sections of singular hermitian line bundles, Annali di Matematica Pura ed Applicata, Volume 191 (2012) no. 3, p. 363 | DOI:10.1007/s10231-011-0187-0
  • Guan, Qiʼan; Zhou, Xiangyu Optimal constant problem in theL2extension theorem, Comptes Rendus. Mathématique, Volume 350 (2012) no. 15-16, p. 753 | DOI:10.1016/j.crma.2012.08.007
  • Varolin, Dror L2 estimates for ¯ across a divisor with Poincaré-like singularities, Illinois Journal of Mathematics, Volume 56 (2012) no. 1 | DOI:10.1215/ijm/1380287470
  • Păun, Mihai Relative critical exponents, non-vanishing and metrics with minimal singularities, Inventiones mathematicae, Volume 187 (2012) no. 1, p. 195 | DOI:10.1007/s00222-011-0333-8
  • Zhu, Langfeng; Guan, Qiʼan; Zhou, Xiangyu On the Ohsawa–Takegoshi L2 extension theorem and the Bochner–Kodaira identity with non-smooth twist factor, Journal de Mathématiques Pures et Appliquées, Volume 97 (2012) no. 6, p. 579 | DOI:10.1016/j.matpur.2011.09.010
  • Guan, Qiʼan; Zhou, Xiangyu; Zhu, Langfeng On the Ohsawa–Takegoshi L2 extension theorem and the twisted Bochner–Kodaira identity, Comptes Rendus. Mathématique, Volume 349 (2011) no. 13-14, p. 797 | DOI:10.1016/j.crma.2011.06.001
  • Koziarz, Vincent Extensions with estimates of cohomology classes, Manuscripta Mathematica, Volume 134 (2011) no. 1-2, p. 43 | DOI:10.1007/s00229-010-0376-y
  • Berndtsson, Bo; Păun, Mihai Bergman kernels and the pseudoeffectivity of relative canonical bundles, Duke Mathematical Journal, Volume 145 (2008) no. 2 | DOI:10.1215/00127094-2008-054
  • Varolin, Dror Division theorems and twisted complexes, Mathematische Zeitschrift, Volume 259 (2008) no. 1, p. 1 | DOI:10.1007/s00209-007-0133-4

Cité par 38 documents. Sources : Crossref