[La conjecture de Chinburg relevée pour les extensions de degré premier du corps rationnel : une approche par les arbres et les systèmes d'Euler]
La “conjecture de Chinburg relevée” (Lifted Root Number Conjecture, LRNC) est une version
beaucoup plus forte de la conjecture
The so-called Lifted Root Number Conjecture is a strengthening of Chinburg’s
Keywords: lifted Chinburg conjecture, Euler systems, combinatorics, trees
Mot clés : conjecture relevée de Chinburg, systèmes d'Euler, combinatoire, arbres
@article{AIF_2002__52_3_735_0, author = {Greither, Cornelius and Ku\v{c}era, Radiu}, title = {The lifted root number conjecture for fields of prime degree over the rationals: an approach via trees and {Euler} systems}, journal = {Annales de l'Institut Fourier}, pages = {735--777}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {3}, year = {2002}, doi = {10.5802/aif.1900}, mrnumber = {1907386}, zbl = {1041.11074}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1900/} }
TY - JOUR AU - Greither, Cornelius AU - Kučera, Radiu TI - The lifted root number conjecture for fields of prime degree over the rationals: an approach via trees and Euler systems JO - Annales de l'Institut Fourier PY - 2002 SP - 735 EP - 777 VL - 52 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1900/ DO - 10.5802/aif.1900 LA - en ID - AIF_2002__52_3_735_0 ER -
%0 Journal Article %A Greither, Cornelius %A Kučera, Radiu %T The lifted root number conjecture for fields of prime degree over the rationals: an approach via trees and Euler systems %J Annales de l'Institut Fourier %D 2002 %P 735-777 %V 52 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1900/ %R 10.5802/aif.1900 %G en %F AIF_2002__52_3_735_0
Greither, Cornelius; Kučera, Radiu. The lifted root number conjecture for fields of prime degree over the rationals: an approach via trees and Euler systems. Annales de l'Institut Fourier, Tome 52 (2002) no. 3, pp. 735-777. doi : 10.5802/aif.1900. http://www.numdam.org/articles/10.5802/aif.1900/
[BF] Equivariant Tamagawa numbers of motives (1998) (Preprint)
[BG] On the equivariant Tamagawa number conjecture for Tate motives (submitted for publication) | Zbl
[Bu] Equivariant Tamagawa numbers and Galois module theory I, Compositio Math., Volume 127 (2001), pp. 304-337 | MR | Zbl
[Deo] Graph theory with applications to engineering and computer science, Prentice-Hall, Englewood Cliffs, 1974 | MR | Zbl
[GRW] A local approach to Chinburg's root number formula, Proc. London Math. Soc. (3), Volume 79 (1999), pp. 47-80 | DOI | MR | Zbl
[GRW1] On Chinburg's root number conjecture, Jbr. Dt. Math.-Vereinigung, Volume 100 (1998), pp. 36-44 | MR | Zbl
[Hu] Circulant graphs and 4-ranks of ideal class groups, Can. J. Math., Volume 46 (1994), pp. 169-183 | DOI | MR | Zbl
[Ka] Graph theory and crystal physics, Graph theory and theoretical physics, Academic Press, New York, 1967 | MR | Zbl
[N] Algebraic number theory, Grundlehren, vol. 322, Springer Verlag, New York, 1999 | MR | Zbl
[R] Arithmetischer Beweis des Satzes über die Anzahl der durch 4 teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper, J. reine angew. Math., Volume 171 (1935), pp. 55-60 | Zbl
[RR] Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. reine angew. Math., Volume 170 (1934), pp. 69-74 | DOI | Zbl
[Ru] The main conjecture, Cyclotomic fields I and II (GTM), Volume 121 (1990)
[RW] The lifted root number conjecture for some cyclic extensions of
[Tu] The dissection of equilateral triangles into equilateral triangles, Proc. Cambridge Phil. Soc, Volume 44 (1948), pp. 463-482 | DOI | MR | Zbl
-
-class groups of cyclic extensions of prime degree , Journal of the Ramanujan Mathematical Society, Volume 30 (2015) no. 4, pp. 413-454 | Zbl:1425.11177 - On bases of Washington's group of circular units of some real cyclic number fields, Journal of Number Theory, Volume 134 (2014), pp. 109-129 | DOI:10.1016/j.jnt.2013.07.016 | Zbl:1305.11097
- Annihilators for the Class Group of a Cyclic Field of Prime Power Degree, II, Canadian Journal of Mathematics, Volume 58 (2006) no. 3, p. 580 | DOI:10.4153/cjm-2006-024-2
Cité par 3 documents. Sources : Crossref, zbMATH