Ensembles pics pour A(D)
Annales de l'Institut Fourier, Tome 29 (1979) no. 3, pp. 171-200.

Soit D un domaine borné strictement pseudoconvexe dans Cn à frontière régulière D. On montre que tout compact d’une sous-variété N de D dont l’espace tangent Tp(N) en chaque point p de N est contenu dans le sous-espace complexe maximal de Tp(D) est un ensemble pic pour A(D), la classe des fonctions analytiques dans D dont toutes les dérivées sont continues dans D¯.

Let D be a bounded strictly pseudoconvex domain in Cn with smooth boundary D. Let A(D) be the class of functions analytic in D and continuous with all their derivatives in D¯. Let N be a C-submanifold of D whose tangent space Tp(N) lies in the maximal complex subspace of Tp(D), for every pN. In this work, we show that every compact subset of N is a peak set for A(D).

@article{AIF_1979__29_3_171_0,
     author = {Chaumat, Jacques and Chollet, Anne-Marie},
     title = {Ensembles pics pour $A^\infty (D)$},
     journal = {Annales de l'Institut Fourier},
     pages = {171--200},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {29},
     number = {3},
     year = {1979},
     doi = {10.5802/aif.757},
     mrnumber = {81c:32036},
     zbl = {0398.32004},
     language = {fr},
     url = {http://www.numdam.org/articles/10.5802/aif.757/}
}
TY  - JOUR
AU  - Chaumat, Jacques
AU  - Chollet, Anne-Marie
TI  - Ensembles pics pour $A^\infty (D)$
JO  - Annales de l'Institut Fourier
PY  - 1979
SP  - 171
EP  - 200
VL  - 29
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/aif.757/
DO  - 10.5802/aif.757
LA  - fr
ID  - AIF_1979__29_3_171_0
ER  - 
%0 Journal Article
%A Chaumat, Jacques
%A Chollet, Anne-Marie
%T Ensembles pics pour $A^\infty (D)$
%J Annales de l'Institut Fourier
%D 1979
%P 171-200
%V 29
%N 3
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/aif.757/
%R 10.5802/aif.757
%G fr
%F AIF_1979__29_3_171_0
Chaumat, Jacques; Chollet, Anne-Marie. Ensembles pics pour $A^\infty (D)$. Annales de l'Institut Fourier, Tome 29 (1979) no. 3, pp. 171-200. doi : 10.5802/aif.757. http://www.numdam.org/articles/10.5802/aif.757/

[1] V.I. Arnold, Les méthodes mathématiques de la mécanique classique, Editions MIR (1976), Moscou. | MR | Zbl

[2] D. Burns, and E.L. Stout, Extending functions from submanifolds of the boundary, Duke Math. J., 43 (1976), 391-404. | MR | Zbl

[3] G.B. Folland and J.J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Princeton University Press (1972). | MR | Zbl

[4] G.B. Folland and E.M. Stein, Estimates for the ∂b complex and analysis on the Heisenberg group, Com. Pure Appl. Math., 27 (1974), 429-522. | MR | Zbl

[5] W. Guillemin, Géométrie symplectique et physique mathématique, Colloque Intern. C.N.R.S, Aix en Provence (1974).

[6] M. Hakim et N. Sibony, Ensembles pics dans des domaines strictement pseudoconvexes, Duke Math. J., 45 (1978), 601-617. | MR | Zbl

[7] F.R. Harvey and R.O. Wells, Holomorphic approximation and hyperfunction theory on a C1 totally real submanifold of a complex manifold, Math. Ann., 197 (1972), 287-318. | MR | Zbl

[8] G.M. Henkin, et A.E. Tumanov, C.R. Ecole d'été à Drogobytch (1974).

[9] S. Kobayashi, Transformation groups in differential geometry, Springer-Verlag (1972), Appendice 1. | MR | Zbl

[10] J.J. Kohn, Global regularity for ∂ on weakly pseudoconvex manifolds, Trans. Amer. Math. Soc., 181 (1973), 273-292. | MR | Zbl

[11] A. Nagel, Smooth zero sets and interpolation sets for some algebras of holomorphic functions on strictly pseudoconvex domains, Duke Math. J., 43 (1976), 323-348. | MR | Zbl

[12] W. Rudin, Peak interpolation sets of classe C1, Pacific J. Math., 75 (1978), 267-279. | MR | Zbl

[13] A. Weinstein, Lectures on symplectic manifolds, Regional conference series in mathematics 29, Amer. Math. Soc. | Zbl

  • Belhachemi, Rachid Local versus global peak sets in real-analytic convex boundaries, Pacific Journal of Mathematics, Volume 190 (1999) no. 1, p. 1 | DOI:10.2140/pjm.1999.190.1
  • Belhachemi, Rachid Peak sets in real-analytic convex boundaries, Pacific Journal of Mathematics, Volume 185 (1998) no. 2, p. 209 | DOI:10.2140/pjm.1998.185.209
  • Guo, Likang The peak-interpolation sets in product domains, Complex Variables, Theory and Application: An International Journal, Volume 27 (1995) no. 2, p. 143 | DOI:10.1080/17476939508814812
  • Putinar, Mihai On dense ideals in spaces of analytic functions, Annales de l'Institut Fourier, Volume 44 (1994) no. 5, pp. 1355-1366 | DOI:10.5802/aif.1437 | Zbl:0816.32012
  • Aleksandrov, A. B. Function Theory in the Ball, Several Complex Variables II, Volume 8 (1994), p. 107 | DOI:10.1007/978-3-642-57882-3_3
  • Nacinovich, Mauro Approximation and Extension of Whitney CR Forms, Complex Analysis and Geometry (1993), p. 271 | DOI:10.1007/978-1-4757-9771-8_10
  • Iordan, Andrei Maximum modulus sets in pseudoconvex boundaries, The Journal of Geometric Analysis, Volume 2 (1992) no. 4, pp. 327-349 | DOI:10.1007/bf02934585 | Zbl:0772.32012
  • Nagel, Alexander; Rosay, Jean-Pierre Maximum modulus sets and reflection sets, Annales de l'Institut Fourier, Volume 41 (1991) no. 2, pp. 431-466 | DOI:10.5802/aif.1260 | Zbl:0725.32007
  • Amar, E. On the extension of CR-functions, Mathematische Zeitschrift, Volume 206 (1991) no. 1, pp. 89-102 | DOI:10.1007/bf02571328 | Zbl:0721.32008
  • Dor, Avner Proper holomorphic maps between balls in one co-dimension, Arkiv för Matematik, Volume 28 (1990) no. 1, pp. 49-100 | DOI:10.1007/bf02387366 | Zbl:0699.32014
  • Hakim, Monique Applications holomorphes propres continues de domaines strictement pseudoconvexes de Cn dans la boule unité de Cn+1. (On the extension of proper holomorphic mappings from strictly pseudoconvex domains in Cn into the unit ball of Cn+1), Duke Mathematical Journal, Volume 60 (1990) no. 1, pp. 115-133 | DOI:10.1215/s0012-7094-90-06003-x | Zbl:0694.32010
  • Saerens, Rita Interpolation theory in Cn: A suryey, Complex Analysis, Volume 1268 (1987), p. 158 | DOI:10.1007/bfb0097302
  • Chaumat, Jacques; Chollet, Anne-Marie Dimension de Hausdorff des ensembles de zéros et d’interpolation pour 𝐴^∞(𝐷), Transactions of the American Mathematical Society, Volume 299 (1987) no. 1, p. 95 | DOI:10.1090/s0002-9947-1987-0869401-x
  • Chaumat, Jacques; Chollet, Anne-Marie Ensembles de zéros et d'interpolation à la frontière de domaines strictement pseudoconvexes. (Zero sets and interpolation on the boundary of strictly pseudoconvex domains), Arkiv för Matematik, Volume 24 (1986), pp. 27-57 | DOI:10.1007/bf02384388 | Zbl:0601.32016
  • Bruna, Joaquim; Ortega, Joaquin Ma. Interpolation by holomorphic functions smooth to the boundary in the unit ball of Cn, Mathematische Annalen, Volume 274 (1986), pp. 527-575 | DOI:10.1007/bf01458591 | Zbl:0585.32018
  • Iordan, Andrei Peak sets in weakly pseudoconvex domains, Mathematische Zeitschrift, Volume 188 (1985), pp. 171-188 | DOI:10.1007/bf01304206 | Zbl:0534.32004
  • Amar, Eric Non division dans A(Ω). (No factorization in A(Ω)), Mathematische Zeitschrift, Volume 188 (1985), pp. 493-511 | DOI:10.1007/bf01161653 | Zbl:0589.32027
  • Saerens, Rita Interpolation manifolds, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV, Volume 11 (1984), pp. 177-211 | Zbl:0579.32023
  • Saerens, Rita; Stout, Edgar Lee Differentiable interpolation on the polydisc, Complex Variables, Theory and Application: An International Journal, Volume 2 (1984) no. 3-4, p. 271 | DOI:10.1080/17476938408814048
  • Bruna, Joaquim; Ortega, Joaquin Ma. Closed finitely generated ideals in algebras of holomorphic functions and smooth to the boundary in strictly pseudoconvex domains, Mathematische Annalen, Volume 268 (1984), pp. 137-157 | DOI:10.1007/bf01456082 | Zbl:0533.32002
  • Noell, Alan V. Properties of peak sets in weakly pseudoconvex boundaries in C2, Mathematische Zeitschrift, Volume 186 (1984), pp. 99-116 | DOI:10.1007/bf01215494 | Zbl:0518.32012
  • Pflug, Peter Various Applications of the Existence of well Growing Holomorphic Functions, Functional Analysis, Holomorphy and Approximation Theory, Proceedings of the Seminario de Analise Functional, Holomorfia e Teoria da Aproximaçāo, Volume 71 (1982), p. 391 | DOI:10.1016/s0304-0208(08)72544-1
  • Chaumat, Jacques; Chollet, Anne-Marie Ensembles pics pour A(D) non globalement inclus dans une variété integrale, Mathematische Annalen, Volume 258 (1982), pp. 243-252 | DOI:10.1007/bf01450680 | Zbl:0574.32023
  • Fornaess, John Erik; Henriksen, Berit Stensones Characterization of global peak sets for A(D), Mathematische Annalen, Volume 259 (1982), pp. 125-130 | DOI:10.1007/bf01456835 | Zbl:0489.32010
  • Henriksen, Berit Stensones A peak set of Hausdorff dimension 2n1 for the algebra A(D) in the boundary of a domain D with C-boundary in Cn., Mathematische Annalen, Volume 259 (1982), pp. 271-277 | DOI:10.1007/bf01457313 | Zbl:0483.32011
  • Duchamp, Thomas; Stout, Edgar Lee Maximum modulus sets, Annales de l'Institut Fourier, Volume 31 (1981) no. 3, pp. 37-69 | DOI:10.5802/aif.837 | Zbl:0439.32007
  • Chollet, Anne-Marie Ensembles De Zéros, Ensembles Pics Pour A(D) et A∞(D), Complex Approximation, Volume 4 (1980), p. 57 | DOI:10.1007/978-1-4612-6115-5_6
  • Chaumat, Jacques; Chollet, Anne-Marie Caractérisation et propriétés des ensembles localement pics de A(D), Duke Mathematical Journal, Volume 47 (1980), pp. 763-787 | DOI:10.1215/s0012-7094-80-04745-6 | Zbl:0454.32013
  • Chaumat, Jacques; Chollet, Anne-Marie Peak sets for A(D), Harmonic analysis in Euclidean spaces, Part 2, Williamstown/ Massachusetts 1978, Proc. Symp. Pure Math., Vol. 35, 97-102, 1979 | Zbl:0429.32021
  • Hakim, Monique; Sibony, Nessim Ensembles pics dans des domaines strictement pseudo-convexes, Duke Mathematical Journal, Volume 45 (1978), pp. 601-617 | DOI:10.1215/s0012-7094-78-04527-1 | Zbl:0402.32008

Cité par 30 documents. Sources : Crossref, zbMATH