Soit un sous-ensemble du dual d’un groupe compact . On dit que est exactement -Sidon (resp. exactement non--Sidon) quand si et seulement si (resp. ). On dit que est exactement (resp. exactement non-) quand vérifie toute est telle que, quel que soit ,
si et seulement si (resp. ).
Dans ce travail, pour chaque et , on construit des ensembles qui sont exactement -Sidon, exactement non--Sidon, exactement et exactement non-.
Let be a subset of a discrete abelian group whose compact dual is . is exactly -Sidon (respectively, exactly non--Sidon) when holds if and only if (respectively, ). is said to be exactly (respectively, exactly non-) if has the property if and only if (respectively, ).
In this paper, for every and , we display sets which are exactly -Sidon, exactly non--Sidon, exactly and exactly non-.
@article{AIF_1979__29_2_79_0, author = {Blei, Ron C.}, title = {Fractional cartesian products of sets}, journal = {Annales de l'Institut Fourier}, pages = {79--105}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {29}, number = {2}, year = {1979}, doi = {10.5802/aif.744}, mrnumber = {81h:43008}, zbl = {0381.43003}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.744/} }
Blei, Ron C. Fractional cartesian products of sets. Annales de l'Institut Fourier, Tome 29 (1979) no. 2, pp. 79-105. doi : 10.5802/aif.744. http://www.numdam.org/articles/10.5802/aif.744/
[1] Multidimensional extensions of the Grothendieck inequality (to appear in Arkiv für Mathematik). | Zbl
,[2] Étude des coefficients de Fourier des fonctions de Lp(G), Ann. Inst. Fourier, Grenoble, 20 (1970), 335-402. | Numdam | MR | Zbl
,[3] Some types of lacunary Fourier series, Colloq. Math., 25 (1972), 117-124. | MR | Zbl
and ,[4] p-Sidon sets, J. of Functional Anal., 15 (1974), 404-427. | MR | Zbl
and ,[5] An example in the theory of lacunary Fourier series, Boll. Unione Mat. Ital., 3 (1970), 375-378. | MR | Zbl
,[6] On p-Sidon sets, Indiana Univ. Math. J., 24 (1974), 161-167. | MR | Zbl
and ,[7] On bounded bilinear forms in an infinite number of variables, Quartely J. Math., 1 (1930), 164-174. | JFM
,[8] Ensembles de Sidon et processus gaussiens (preprint). | Zbl
,[9] Trigonometric series with gaps, J. Math. Mechanics, 9 (1960), 203-227. | MR | Zbl
,[10] Fourier Analysis on Groups, Interscience, New York, 1967.
,Cité par Sources :