Brownian motion and generalized analytic and inner functions
Annales de l'Institut Fourier, Tome 29 (1979) no. 1, pp. 207-228.

Soit f une application d’un ouvert Rp dans Rq, avec p>q. Dire que f conserve le mouvement brownien, à changement de temps aléatoire près, signifie que f est harmonique et que son application linéaire tangente est en chaque point une co-isométrie. Dans le cas p=2, q=2, ces conditions indiquent que f correspond à une fonction analytique d’une variable complexe. Nous étudions, essentiellement, les cas p=3, q=2 où nous montrons en particulier qu’une telle application ne peut être “intérieure” sans être triviale. Un résultat analogue pour p=4, q=2 permettrait de résoudre une conjecture classique sur les fonctions analytiques de deux variables.

Let f be a mapping from an open set in Rp into Rq, with p>q. To say that f preserves Brownian motion, up to a random change of clock, means that f is harmonic and that its tangent linear mapping in proportional to a co-isometry. In the case p=2, q=2, such conditions signify that f corresponds to an analytic function of one complex variable. We study, essentially that case p=3, q=2, in which we prove in particular that such a mapping cannot be “inner” if it is not trivial. A similar result for p=4, q=2 would solve a classical conjecture on analytic functions of two complex variables.

@article{AIF_1979__29_1_207_0,
     author = {Bernard, Alain and Campbell, Eddy A. and Davie, A. M.},
     title = {Brownian motion and generalized analytic and inner functions},
     journal = {Annales de l'Institut Fourier},
     pages = {207--228},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {29},
     number = {1},
     year = {1979},
     doi = {10.5802/aif.735},
     mrnumber = {81b:30088},
     zbl = {0386.30029},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.735/}
}
TY  - JOUR
AU  - Bernard, Alain
AU  - Campbell, Eddy A.
AU  - Davie, A. M.
TI  - Brownian motion and generalized analytic and inner functions
JO  - Annales de l'Institut Fourier
PY  - 1979
SP  - 207
EP  - 228
VL  - 29
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/aif.735/
DO  - 10.5802/aif.735
LA  - en
ID  - AIF_1979__29_1_207_0
ER  - 
%0 Journal Article
%A Bernard, Alain
%A Campbell, Eddy A.
%A Davie, A. M.
%T Brownian motion and generalized analytic and inner functions
%J Annales de l'Institut Fourier
%D 1979
%P 207-228
%V 29
%N 1
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/aif.735/
%R 10.5802/aif.735
%G en
%F AIF_1979__29_1_207_0
Bernard, Alain; Campbell, Eddy A.; Davie, A. M. Brownian motion and generalized analytic and inner functions. Annales de l'Institut Fourier, Tome 29 (1979) no. 1, pp. 207-228. doi : 10.5802/aif.735. http://www.numdam.org/articles/10.5802/aif.735/

[1] L.V. Ahlfors, Lectures on Quasi-Conformal Mappings, Van Norstrand, 1966. | MR | Zbl

[2] E. Bombieri, E. De Giorgi and E. Giusti, Minimal cones and the Bernstein problem, Inventiones Math., 7 (1969), 243-268. | EuDML | MR | Zbl

[3] J. Dieudonne, Eléments d'Analyse, Gauthiers-Villars, 1971, Vol. 4. (English translation : Treatise on Analysis, Academic Press, 1974). | Zbl

[4] J. Eells, Singularities of Smooth Maps, Nelson, 1967. | MR | Zbl

[5] L.P. Eisenhart, Riemannian Geometry, Princeton, 1949. | MR | Zbl

[6] B. Fuglede, Harmonic morphisms between Riemannian manifolds, Preprint, Copenhagen University, 1976.

[7] O.A. Ladyzhenskaya and N.N. Ural'Tseva, Linear and Quasilinear Elliptic Equations, Nauka Press, Moscow 1964, English translation Academic Press, 1968. | Zbl

[8] N.S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, 1972. | MR | Zbl

[9] H.P. Mckean, Stochastic Integrals, Academic Press, 1969. | MR | Zbl

[10] R. Narasimhan, Introduction to the Theory of analytic Spaces, Lecture Notes in Mathematics, No. 25, Springer-Verlag, 1966. | MR | Zbl

[11] M.H.A. Newman, Topology of Plane Sets of Points, Cambridge University Press, 2nd. Edition, 1952. | Zbl

[12] I.G. Petrovsky, Lectures on Partial Differential Equations, Interscience, 1954. | MR | Zbl

  • Wei, Shihshu Walter; Li, Jun-Fang; Wu, Lina p-parabolicity and a generalized Bochner's method with applications, La Matematica, Volume 3 (2024) no. 3, pp. 1162-1197 | DOI:10.1007/s44007-024-00101-5 | Zbl:7919687
  • Mania, M.; Tevzadze, R. On martingale transformations of multidimensional Brownian motion, Statistics Probability Letters, Volume 175 (2021), p. 7 (Id/No 109119) | DOI:10.1016/j.spl.2021.109119 | Zbl:1482.60060
  • Baird, Paul; Ghandour, Elsa Biconformal equivalence between 3-dimensional Ricci solitons, Tôhoku Mathematical Journal. Second Series, Volume 73 (2021) no. 2, pp. 289-316 | DOI:10.2748/tmj.20200428 | Zbl:1481.53061
  • Åhag, Per; Czyż, Rafał; Hed, Lisa The classification of holomorphic (m,n)-subharmonic morphisms, Complex Variables and Elliptic Equations, Volume 65 (2020) no. 2, pp. 152-177 | DOI:10.1080/17476933.2019.1574773 | Zbl:1444.32032
  • Baird, Paul; Ghandour, Elsa A class of analytic pairs of conjugate functions in dimension three, Advances in Geometry, Volume 19 (2019) no. 3, pp. 421-432 | DOI:10.1515/advgeom-2018-0034 | Zbl:1421.53014
  • Tehranchi, Michael R. If B and f(B) are Brownian motions, then f is affine, Rocky Mountain Journal of Mathematics, Volume 47 (2017) no. 3 | DOI:10.1216/rmj-2017-47-3-947
  • Baird, Paul; Kamissoko, Dantouma Unique continuation of semi-conformality for a harmonic mapping onto a surface, Manuscripta Mathematica, Volume 128 (2009) no. 1, pp. 69-75 | DOI:10.1007/s00229-008-0226-3 | Zbl:1167.58008
  • Danielo, Laurent Construction of Einstein metrics based on biconformal transformations, Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI, Volume 15 (2006) no. 3, pp. 553-588 | DOI:10.5802/afst.1129 | Zbl:1127.53037
  • Wood, J. C. Harmonic maps and harmonic morphisms, Journal of Mathematical Sciences (New York), Volume 94 (1996) no. 2, p. 1 | DOI:10.1007/bf02364883 | Zbl:0932.58021
  • Tang, Zizhou Harmonic polynomial morphisms between Euclidean spaces, Science in China. Series A, Volume 42 (1999) no. 6, pp. 570-576 | DOI:10.1007/bf02880074 | Zbl:0982.53059
  • Duheille, F. On the range of R2 or R3-valued harmonic morphisms, The Annals of Probability, Volume 26 (1998) no. 1, pp. 308-315 | DOI:10.1214/aop/1022855420 | Zbl:0933.31006
  • Ou, Ye-Lin Quadratic harmonic morphisms and O-systems, Annales de l'Institut Fourier, Volume 47 (1997) no. 2, pp. 687-713 | DOI:10.5802/aif.1578 | Zbl:0918.58020
  • Gudmundsson, Sigmundur Harmonic morphisms between spaces of constant curvature, Proceedings of the Edinburgh Mathematical Society. Series II, Volume 36 (1993) no. 1, pp. 133-143 | DOI:10.1017/s0013091500005940 | Zbl:0790.58012
  • Baird, Paul; Wood, John C. Harmonic morphisms and conformal foliations by geodesics of three-dimensional space forms, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, Volume 51 (1991) no. 1, p. 118 | DOI:10.1017/s1446788700033358
  • Baird, Paul Harmonic morphisms and circle actions on 3- and 4-manifolds, Annales de l'Institut Fourier, Volume 40 (1990) no. 1, pp. 177-212 | DOI:10.5802/aif.1210 | Zbl:0676.58023
  • Csink, Laszlo; Fitzsimmons, P. J.; Øksendal, Bernt A stochastic characterization of harmonic morphisms, Mathematische Annalen, Volume 287 (1990) no. 1, pp. 1-18 | DOI:10.1007/bf01446874 | Zbl:0653.58044
  • Coron, Jean-Michel; Helein, F. Harmonic diffeomorphisms, minimizing harmonic maps and rotational symmetry, Compositio Mathematica, Volume 69 (1989) no. 2, pp. 175-228 | Zbl:0686.58012
  • Øksendal, Bernt Dirichlet forms, quasiregular functions and Brownian motion, Inventiones Mathematicae, Volume 91 (1988) no. 2, pp. 273-297 | DOI:10.1007/bf01389369 | Zbl:0639.30017
  • Baird, Paul; Wood, John C. Bernstein theorems for harmonic morphisms from R 3 and S 3, Mathematische Annalen, Volume 280 (1988) no. 4, pp. 579-603 | DOI:10.1007/bf01450078 | Zbl:0621.58011
  • Baird, Paul Harmonic morphisms onto Riemann surfaces and generalized analytic functions, Annales de l'Institut Fourier, Volume 37 (1987) no. 1, pp. 135-173 | DOI:10.5802/aif.1080 | Zbl:0608.58015
  • Bañuelos, R.; Øksendal, Bernt Exit times for elliptic diffusions and BMO, Proceedings of the Edinburgh Mathematical Society. Series II, Volume 30 (1987), pp. 273-287 | DOI:10.1017/s0013091500028339 | Zbl:0625.60088
  • Letac, Gérard Seul le groupe des similitudes-inversions préserve le type de la loi de Cauchy-conforme de Rn pour n>1. (Only the group of similitude-inversions preserves the Cauchy-conformal type distributions of Rn for n>1), Journal of Functional Analysis, Volume 68 (1986), pp. 43-54 | DOI:10.1016/0022-1236(86)90056-x | Zbl:0612.60019
  • Øksendal, Bernt Stochastic Processes, Infinitesimal Generators and Function Theory, Operators and Function Theory (1985), p. 139 | DOI:10.1007/978-94-009-5374-1_6
  • Øksendal, Bernt Finely harmonic morphisms, Brownian path preserving functions and conformal martingales, Inventiones Mathematicae, Volume 75 (1984), pp. 179-187 | DOI:10.1007/bf01403096 | Zbl:0537.60083
  • Csink, L.; Øksendal, Bernt Stochastic harmonic morphisms: Functions mapping the paths of one diffusion into the paths of another, Annales de l'Institut Fourier, Volume 33 (1983) no. 2, pp. 219-240 | DOI:10.5802/aif.925 | Zbl:0498.60083
  • Øksendal, Bernt A stochastic proof of an extension of a theorem of Rado, Proceedings of the Edinburgh Mathematical Society. Series II, Volume 26 (1983), pp. 333-336 | DOI:10.1017/s0013091500004399 | Zbl:0541.60077
  • Øksendal, Bernt; Stroock, Daniel W. A characterization of harmonic measure and Markov processes whose hitting distributions are preserved by rotations, translations and dilatations, Annales de l'Institut Fourier, Volume 32 (1982) no. 4, pp. 221-232 | DOI:10.5802/aif.901 | Zbl:0489.60078
  • Darling, R. W. R. Martingales in manifolds—Definition examples, and behaviour under maps, Séminaire de Probabilités XVI, 1980/81 Supplément: Géométrie Différentielle Stochastique, Volume 921 (1982), p. 217 | DOI:10.1007/bfb0092652
  • Letac, G. La preservation des trajectoires du mouvement Brownien et la preservation des lois de Cauchy, Annales Scientifiques de l'Université de Clermont-Ferrand II. Mathématiques, Volume 69 (1981), pp. 81-85 | Zbl:0489.60019
  • Baird, P.; Eells, J. A conservation law for harmonic maps, Geometry Symposium Utrecht 1980, Volume 894 (1981), p. 1 | DOI:10.1007/bfb0096222

Cité par 30 documents. Sources : Crossref, zbMATH