Soit un groupe topologique ; nous montrons l’existence des théories homologiques et cohomologiques équivariantes, définies sur la catégorie des -paires et -applications qui satisfont tous les sept axiomes équivariants d’Eilenberg-Steenrod et qui ont le système des coefficients covariants (resp. contrevariants) donné.
Dans le cas d’un groupe de Lie Compact nous définissons aussi les -complexes équivariants et nous donnons quelques-unes de leurs propriétés fondamentales.
Cet article est un bref résumé et ne contient aucune démonstration.
Let be a topological group. We give the existence of an equivariant homology and cohomology theory, defined on the category of all -pairs and -maps, which both satisfy all seven equivariant Eilenberg-Steenrod axioms and have a given covariant and contravariant, respectively, coefficient system as coefficients.
In the case that is a compact Lie group we also define equivariant -complexes and mention some of their basic properties.
The paper is a short abstract and contains no proofs.
@article{AIF_1973__23_2_87_0, author = {Illman, S\"oren}, title = {Equivariant algebraic topology}, journal = {Annales de l'Institut Fourier}, pages = {87--91}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {23}, number = {2}, year = {1973}, doi = {10.5802/aif.458}, mrnumber = {50 #11220}, zbl = {0261.55007}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.458/} }
Illman, Sören. Equivariant algebraic topology. Annales de l'Institut Fourier, Tome 23 (1973) no. 2, pp. 87-91. doi : 10.5802/aif.458. http://www.numdam.org/articles/10.5802/aif.458/
[1] Equivariant cohomology theories, Bull. Amer. Math. Soc., 73 (1967), 269-273. | Zbl
,[2] Equivariant cohomology theories, Lecture Notes in Mathematics, Vol. 34, Springer-Verlag (1967). | MR | Zbl
,[3] Singuläre Definition der Äquivarianten Bredon Homologie, Manuscripta Matematica 5 (1971), 91-102. | Zbl
,[4] Equivariant singular homology and cohomology for actions of compact Lie groups. To appear in : Proceedings of the Conference on Transformation Groups at the University of Massachusetts, Amherst, June 7-18 (1971) Springer-Verlag, Lecture Notes in Mathematics. | Zbl
,[5] Equivariant Algebraic Topology, Thesis, Princeton University (1972).
,[6] Equivariant singular homology and cohomology. To appear in Bull. Amer. Math. Soc. | Zbl
,[7] Equivariant K-theory and Fredholm operators, Journal of the Faculty of Science, The University of Tokyo, Vol. 18 (1971), 109-125. | Zbl
,[8] The classification of G-spaces, Memoirs of Amer. Math. Soc., 36 (1960). | MR | Zbl
,[9] The triangulability of the orbit space of a differentiable transformation group, Bull. Amer. Math. Soc., 69 (1963), 405-408. | MR | Zbl
,Cité par Sources :