@article{AFST_1980_5_2_2_117_0, author = {Goldberg, Samuel I. and Vaisman, Izu}, title = {On compact locally conformal {Kaehler} manifolds with non-negative sectional curvature}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {117--123}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {Ser. 5, 2}, number = {2}, year = {1980}, mrnumber = {595194}, zbl = {0447.53054}, language = {en}, url = {http://www.numdam.org/item/AFST_1980_5_2_2_117_0/} }
TY - JOUR AU - Goldberg, Samuel I. AU - Vaisman, Izu TI - On compact locally conformal Kaehler manifolds with non-negative sectional curvature JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1980 SP - 117 EP - 123 VL - 2 IS - 2 PB - Université Paul Sabatier PP - Toulouse UR - http://www.numdam.org/item/AFST_1980_5_2_2_117_0/ LA - en ID - AFST_1980_5_2_2_117_0 ER -
%0 Journal Article %A Goldberg, Samuel I. %A Vaisman, Izu %T On compact locally conformal Kaehler manifolds with non-negative sectional curvature %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1980 %P 117-123 %V 2 %N 2 %I Université Paul Sabatier %C Toulouse %U http://www.numdam.org/item/AFST_1980_5_2_2_117_0/ %G en %F AFST_1980_5_2_2_117_0
Goldberg, Samuel I.; Vaisman, Izu. On compact locally conformal Kaehler manifolds with non-negative sectional curvature. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 5, Tome 2 (1980) no. 2, pp. 117-123. http://www.numdam.org/item/AFST_1980_5_2_2_117_0/
[1] «Topology of almost contact manifolds». J. Differential Geometry, 1(1967), 347-354. | MR | Zbl
and .[2] «Curvature and Homology». Academic Press, Inc., New York & London,1962. | Zbl
.[3] «Some properties of locally conformal Kähler manifolds». Hokkaido, Math. J.8(1979), 191-198. | MR | Zbl
.[4] «On harmonic forms in compact locally conformal Kähler manifolds with the parallel Lee form». Preprint. | MR
and .[5] «Contact manifolds of positive curvature». Thesis, Univ. of Illinois, 1966.
.[6] «Almost contact manifolds». Part III, Lecture Notes, Math. Inst., Tôhoku Univ.,1968.
.[7] «On locally conformal almost Kähler manifolds». Israel J. Math., 24 (1976), 338-351. | MR | Zbl
.[8] «Locally conformal Kähler manifolds with parallel Lee form». Rend. di Mat. Roma, 12(1979), 263-284. | MR | Zbl
.