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ON RANK ONE SYMMETRIC SPACE

Inkang KIM

Abstract

In this paper we survey some recent results on rank one symmetric space.

Résumé

Dans ce papier, nous survolons quelques résultats récents sur l’espace
symétrique de rang un.

1. Introduction

Symmetric space has been at the center of research interest more than several
decades. It is tied up with Riemannian geometry, semi-simple Lie group the-
ory, ergodic theory, 3-dimensional topology, number theory and other branches of
mathematics. It is a Riemannian space which has both rigidity and rich defor-
mation, and available research tools are elegantly intertwined each other. It has
a rigidity nature whose prototypical theorems are by Mostow and Margulis. So
the fundamental group of a compact locally symmetric manifold completely de-
termines the geometry in dimension ≥ 3. It also has an entropy result whose best
known theorem is by Besson, Courtois and Gallot [2]. But if we change the realm
to infinite volume locally symmetric manifolds, it has a rich deformation theory.
Convex cocompact hyperbolic 3-manifold is the best example to study. Hyper-
bolic geometry is also a basic tool to classify 3-dimensional topological manifolds
after Thurston. After Perelman’s work, 3-dimensional topology is closely related
to partial differential equation theory and analysis on manifolds. In this short
note, we survey some recent results related to this rigidity-flexibility phenomenon
of symmetric space, specially of rank 1. We begin with 3-dimensional hyperbolic
geometry which provides a rich deformation theory. Its deformation theory is
pioneered by Alfors, Bers, Kra, Sullivan, Thurston and many others. Recently
many open conjectures are settled down and we present one of this conjecture in
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this paper, namely convergence criterion for freely decomposable Kleinian groups.
Next we look at rigidity side of rank one space in the language of length spectrum.
Finally we prove a local rigidity of a lattice in a bigger symmetric space.

2. Hyperbolic 3-manifold

According to Thurston’s geometrization program, every 3-manifold can be de-
composed into smaller pieces so that each piece admits one of eight geometries.
Hyperbolic geometry is dominant and most important in many aspects. When
proposing this geometrization program, Thurston himself proved a remarkable
theorem, which is a Haken hyperbolization theorem. During his proof of this the-
orem, mapping torus was the most important and hardest case to deal with. To
prove this case, he used so-called a double-limit theorem. But his technique in
this case heavily depends on the fact that the boundary of a manifold is incom-
pressible. So this technique fails in compression body. But he proposed a similar
theorem which is valid even in a manifold with compressible boundary. Recently
the author with two others settled down this conjecture and in fact we gave a
stronger version of Thurston’s conjecture [8]. The precise statement is

Theorem 1. — Let M be a compact irreducible atoroidal 3-manifold with a com-
pressible boundary, and ρ0 : π1(M)→PSL(2, C) a geometrically finite represen-
tation which uniformises M . Let (mi) be a sequence in the Teichmüller space
T (∂M) which converges in the Thurston compactification to a projective mea-
sured lamination [λ] which is doubly incompressible. Let q : T (∂M)→QH(ρ0) be
the Alfors-Bers map, and suppose that ρi is a sequence of discrete faithful repre-
sentations corresponding to q(mi). Then passing to a subsequence, ρi converges
algebraically.

A 3-manifold is irreducible if every embedded two sphere bounds a 3-ball, and is
atoroidal if every torus is boundary parallel. A boundary of a 3-manifold is com-
pressible if it’s fundamental group does not inject into the fundamental group of the
3-manifold, and equivalently by loop theorem (or Dehn’s lemma) it is compressible
if the 3-manifold has a properly embedded compressing disc whose boundary lies
on that boundary. For a given H3/Γ, one can form the smallest convex set whose
boundary is the limit set of Γ, which is called the convex hull of Γ. The quotient of
the convex hull by Γ is called the convex core of Γ. This definition extends to any
negatively curved manifolds. If the convex core has a finite volume, the manifold
is called geometrically finite. If there is no cusps, it is called convex cocompact. A
measured lamination λ is doubly incompressible if there is a positive number η so
that for any compressing disc, essential annulus or Möbius band E, i(λ, ∂E) > η.
Recall also that Thurston compactified the Teichmüller space by attaching the
space of projective measured laminations as a boundary. An Alfors-Bers map
q : T (∂M)→QH(ρ0) is the one which associates a convex cocompact hyperbolic
metric in the interior of M to its hyperbolic metric on boundary surface at infinity.



On rank one symmetric space 127

This map is a covering map in general. QH(ρ0) is the space of quasi-conformal,
equivalently quasi-isometric deformations of a given metric ρ0.

The idea of a proof goes as follows. Suppose the sequence ρn diverges. Then it
converges to an isometric action on R-tree in the sense of Gromov-Morgan-Shalen.
An R-tree is a geodesic metric space such that every pair of points has a unique
geodesic connecting them. After a hard working, one can create a sequence of
annuli Ai in M so that the Housdorff limit of ∂Ai does not intersect λ transversely.
But this will contradict the property of λ being doubly incompressible. Using this
theorem together with ending lamination conjecture, one can deduce Ber’s density
conjecture. Namely any finitely generated Kleinian group is an algebraic limit of
a sequence of geometrically finite Kleinian groups.

3. Length spectrum rigidity

When a locally symmetric manifold is of infinite volume, Mostow rigidity does not
hold, so to get a rigidity result one has to put more conditions. The most popular
one is the marked length spectrum. Under this assumption, it is known that any
Zariski dense subgroup of semi-simple Lie group of noncompact type is completely
determined by its marked length spectrum [9, 6]. But it is widely believed that
the unmarked length spectrum will determine the group up to finite possibilities.
We call the set of lengths of closed geodesics (or the set of translation lengths of
elements in a group) length spectrum or length spectral set of a manifold (or a
group).

McKean [12] used the Selberg’s trace formula to show that there is only finitely
many hyperbolic metrics on a closed surface with a given spectral set. Later
Osgood, Phillips and Sarnak [13] showed the compactness of isospectral metrics
on a closed surface. Much later Brooks, Perry and Peterson [3] showed the same
result for closed 3-manifolds near a metric of constant curvature.

When the manifold is of infinite volume, the following is known [10].

Theorem 2. — Let Λ be the length spectrum of a convex cocompact hyperbolic
3-manifold with incompressible boundary. Then there is only finitely many (up to
isometry) hyperbolic manifolds homotopy equivalent to M which have the same
length spectrum Λ.

The proof is a combination of the result in [10] and Mumford compactness theorem
on Teichmüller space. But this theorem is generalised to arbitrary rank 1 manifold
with mild assumptions [5].

Theorem 3. — Suppose M is a convex cocompact real hyperbolic 3-manifold
which is not a handle body. Then the set of convex cocompact real hyperbolic
3-manifolds homotopy equivalent to M with the same spectral set as M is finite
up to isometry. For real hyperbolic manifold of dimension n ≥ 4, the set of convex
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cocompact real hyperbolic manifold of dimension n which are homotopy equivalent
to M with a fixed length spectrum is finite. For other rank 1 symmetric space,
assume that the critical exponent of the Poincaré series is greater than or equal
to the half of the Hausdorff dimension of the boundary of the symmetric space.
Then the set of convex cocompact rank 1 metrics on a fixed manifold is finite.

The idea of a proof goes as follows. One uses geometric limit argument in the
sense of Gromov. First use that the bottom spectrum of Laplacian is bounded
above by Cheeger constant, and then use the fact that there is a relation between
the bottom spectrum and the Hausdorff dimension of the limit set. Then one can
conclude that there is a uniform bound for the volume of the boundary of convex
core, which has a fixed topology, using a version of Mostow rigidity for variable
negative curvature [1]. Putting all these facts together, one gets that the volume of
the convex core has a uniform upper bound for a fixed spectral set. Also for a fixed
spectral set, one knows the uniform lower bound for injectivity radius of convex
core, and so the upper bound for the diameter of the convex core. Then using a
geometric limit method, together with the result in [9] about a finite determining
set, one finishes the proof.

For hyperbolic 3-manifold, one used an assumption that the bottom spectrum is
not 1, which occurs when the manifold is a handle body. For higher dimensional
real hyperbolic space, one can use the argument of Sullivan [14] to derive the
finiteness. One suspect that there is a different method to show the finiteness of
isospectrality for higher rank symmetric spaces.

4. Local rigidity

Even though Mostow rigidity rules for lattices, one can think of the following
situation. Let Γ be a lattice in a symmetric space S. Consider a bigger symmetric
space S′ which contains S as a totally geodesic manifold. Γ naturally acts on S′.
Is it possible to deform Γ in Iso(S′)? In some cases, the answer is yes. There
are examples of lattices in PSO(3, 1) which can be deformed in PSO(k, 1) for
k > 3. But in general this is not always true. For example a uniform lattice
in PSU(n, 1) cannot be deformed in PSU(m, 1),m > n due to K. Corlette [4].
Following the arguments used in [7], one can see that the fundamental group of
a convex cocompact rank one locally symmetric manifold of dimension > 3 is
isomorphic to the one of the CW complex whose complexity is controlled by the
volume of the manifold. So for a fixed upper bound for the volume of the convex
core of the manifold, there are only finitely many possible fundamental groups.
Then suppose that a lattice in a symmetric space S can be deformed to a convex
cocompact discrete group in S′ where S is totally geodesically embedded. One can
perturb so little that the volume of the convex core is bounded above by a uniform
constant. Then by the observation above, this is possible only for finitely many
lattices. This shows that most of cases, we cannot deform a lattice in a bigger
symmetric space.
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In this note we give another example of local rigidity [11].

Theorem 4. — Let Γ be a uniform lattice in PSO(4, 1) which can be regarded
as a discrete group in PSp(n, 1), n > 1 in a canonical way by identifying H4

R with
a quaternionic line. Then Γ cannot be locally deformed in PSp(n, 1).

The idea of a proof is to use Raghunathan-Matsushima-Murakami result. We can
push the result a litter further to deal with non-uniform lattice with an assumption.

Theorem 5. —Under the same assumption with a non-uniform lattice, there is
no local deformation preserving parabolicity.

This fact has to do with L2-norm of forms. Note that Raghunathan-Matsushima-
Murakami result holds only for finite L2-norm forms. We strongly believe that
in our case, we do not need preserving parabolicity. The same statement holds
for uniform lattice in SU(1, 1) and in SO(3, 1) considering SU(1, 1) ⊂ Sp(1, 1) ⊂
Sp(n, 1) and SO(3, 1) ⊂ SO(4, 1) ⊂ Sp(1, 1) ⊂ Sp(n, 1).
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