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REAL AND COMPLEX TRANSVERSELY SYMPLECTIC
ANOSOV FLOWS OF DIMENSION FIVE

Yong FANG

Résumé

Nous présentons plusieurs résultats de rigidité concernant les flots d’Ano-
sov admettant transversalement des structures symplectiques réelles ou com-
plexes de dimension 5.

Abstract

We present several rigidity results about five-dimensional real or complex
transversely symplectic Anosov flows.

1. Real transversely symplectic flows

This exposition contains 4 sections. The first two are devoted to real trans-
versely symplectic Anosov flows, while the other two sections are devoted to com-
plex transversely symplectic Anosov flows and remarks. Let us begin with the real
case.

Let φt be a C∞ flow defined on a closed and connected manifold M . We
denote by X the generator of φt. Then φt is said to be transversely symplectic if
there exists on M a C∞ closed 2-form ω such that Ker ω = RX. Recall that by
definition

Kerω = {u ∈ TM | ω(u, v) = 0,∀v ∈ Tπ(u)M},

where π denotes the canonical projection of TM onto M . Then by the Cartan
formula, we get

LXω = diXω + iXdω = 0,

i.e. ω is φt-invariant. Firstly, we have the following trivial fact.
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Lemma 1.1 Let φt be a transversely symplectic flow as above. Then there
are two possibilities:

1. Either X ≡ 0 and M is of dimension even.

2. Or X vanishes nowhere and M is of dimension odd.

Proof . — If X ≡ 0, then ω is non-degenerate. So the dimension of M must
be even. If X is not identically zero, then there exists some point x ∈ M such
that Ker ωx = RXx %= 0. Thus the restriction of ω onto a local transverse passing
through x is non-degenerate. So the dimension of M must be odd. Thus for each
point y ∈ M , Ker ωy is not trivial. We deduce that X vanishes nowhere.

If X ≡ 0, then the study of (φt,ω) is just that of classical symplectic geometry,
which is not the object of this article. So in the following, we suppose always that
X vanishes nowhere, i.e. φt admits no fixed point. The orbits of φt define a C∞

foliation on M , which is denoted by Φ. We have the following simple fact.

Lemma 1.2 Under the notation above, φt is transversely symplectic iff Φ
admits a transverse symplectic structure.

Proof . — Suppose firstly that φt is transversely symplectic. Take a local
transverse Σ of Φ and denote by i : Σ → M the natural injection. Since ω is
closed and Kerω = RX, then i∗ω gives a symplectic structure on Σ. We need see
that these symplectic structures defined on local transverses are invariant under
holonomy maps. Take two transverses Σ1 and Σ2 related by a holonomy map H.
Then there exists a C∞ map α : Σ1 → R such that

H(x) = φα(x)(x), ∀ x ∈ Σ1.

Thus we get

ω2(DH(u), DH(v)) = ω2(Dα(u) · X + Dφα(x)(u), Dα(v) · X + Dφα(x)(v))
= ω(Dφα(x)(u), Dφα(x)(v)) = ω1(u, v).

So Φ admits a transverse symplectic structure.

Inversely, suppose that Φ admits a transverse symplectic structure. Then in
each flow box, we can extend its tranverse symplectic form naturally by defining
ω(X, ·) = 0. It is easily seen that different pieces fit together to give a well-
defined close 2-form ω such that Kerω = RX, which is in addition φt-invariant by
definition.

We deduce that

Corollary 1.1 If φt is transversely symplectic, then so is any smooth time
change of φt.



Real and Complex Transversely Symplectic Anosov Flows 107

Even though some of the results below are valid in general dimensions, we
prefer to consider only the case of dimension 5. So in the following, we always
suppose that M is a closed manifold of dimension 5.

Consider the vector field ∂
∂x1

defined on R5. It preserves the transverse sym-
plectic form dx2 ∧ dx3 + dx4 ∧ dx5. The flow of ∂

∂x1
is said to be the canonical

transversely symplectic flow. Then by the classical Theorem of G. Darboux in
symplectic geometry, we get the following

Lemma 1.3 Each transversely symplectic flow is locally isomorphic to the
canonical one above.

For any x ∈ M , a subspace E of TxM is said to be Lagrangian if Xx %∈ E,
dimE = 2 and ω |E≡ 0. A C1-submanifold Σ of M is said to be Lagrangian if
for any x ∈ Σ, so is TxΣ. A C0-foliation with C1-leaves F of M is said to be
Lagrangian if so is each of its leaf. The set of Lagrangian submanifolds of M is
acted on naturally by φt.

One of the principal ways to construct transversely symplectic flows is to take
the restrictions of hamiltonian flows. Let (M̄, ω̄) be a 6-dimensional symplectic
manifold. Take an Hamiltonian function H : M̄ → R. Denote by XH the corre-
sponding field of H, i.e. iXH ω̄ = −dH. Thus the subset H−1(1) is invariant under
the flow of XH denoted by φH

t . Suppose that H−1(1) is a C∞ submanifold of M̄ .
Then we get by the definition of XH that T (H−1(1)) = Ker(iXH ω̄). Take at any
point x ∈ H−1(1) a dual basis

{XH(x), e2, f1, f2, g1, g2}.

Then Ker(iXH ω̄) must be contained in the vector space generated by

{XH(x), f1, f2, g1, g2}.

Since ω̄ is non-denegerate, then we get Tx(H−1(1)) =
∨
{XH(x), f1, f2, g1, g2}.

Thus φH
t |H−1(1) is transversely symplectic with respect to ω̄ |H−1(1). Here are

some examples.

1. Consider C3. For any α and β in C3, denote by 〈α, β〉 the natural Hermitian
product of these two vectors. Then define

ω̄(α, β) = *〈α, β〉.

Thus it is easily seen that (C3, ω̄) is a symplectic manifold. Define H : C3 → R
such that H(α) =| α1 |2 + | α2 |2 + | α3 |2. Then we have H−1(1) = S5,
XH(α) = iα and φH

t (α) = eitα. φH
t acts on S5 properly and freely. Thus the

study of (φH
t , S5) is equivalent to that of the symplectic geometry of CP 2.

2. Let N be a closed connected manifold and let L : TN → R be a smooth con-
vex superlinear Lagrangian (see [CIPP] for the details). Then the Euler-Lagrange
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equation associated to L defines a complete flow φt on TN . Using the Legendre
transformation, we can see that φt is Hamiltonian. So the restrictions of φt to the
energy levels are transversely symplectic.

For example, if we fix a Riemannian metric g on N and define L : TN → R
such that L(u) = g(u, u), then the restriction of φt onto the energy-1 submanifold
is just the geodesic flow of g.

3. Let (N, g) be a Riemannian manifold and let Ω be a C∞ closed 2-form on
N , which modelises the effect of a magnetic field. Denote by λ the Liouville form
on TN and define

ω = dλ + π∗Ω,

where π denotes the natural projection of TN onto N . It is easy to see that
ω is a symplectic form on TN . Take the Hamiltonian H : TN → R such that
H(u) = g(u, u). Then the restriction onto T 1N of the Hamiltonian flow of H with
respect to ω is transversely symplectic, which is denoted by φt and is called the
magnetic flow of (N, g, Ω). If Ω is exact, then its magnetic flow is Euler-Lagrange.

From the examples above, we see two extremities. On one hand, the flow has
no dynamic, as in example 1. So in this case, we return to symplectic geometry. On
the other hand, perfectly chaotic transversely symplectic flows exist. For example,
if the sectional curvatures of a Riemannian manifold are strictly negative, then
its geodesic flow is chaotic and Anosov. In this exposition, we are interested in
transversely symplectic Anosov flows, whose definition is recalled below.

2. Rigidity of real transversely symplectic Anosov flows

Let φ be a C∞-flow defined on a closed connected manifold M . φt is said
to be Anosov if there exist two continuous and φt-invariant sub vector bundles
Esu and Ess of TM and two positive numbers a and b such that the following
conditions are satisfied:

1. TM = Esu ⊕ RX ⊕ Ess.

2. ‖ Dφ−t(u) ‖≤ ae−bt ‖ u ‖, ∀ t > 0 and u ∈ Esu.

3. ‖ Dφt(u) ‖≤ ae−bt ‖ u ‖, ∀ t > 0 and u ∈ Ess.

It is well-known that Esu and Ess integrate both to C0-foliations with C∞-
leaves, which are called respectively dilating and contracting foliations (see [HK]).
These two C0-foliations give two geometric invariants of φt, under flow conjugacies.

If φt is in addition transversely symplectic, then by the definition of an Anosov
flow, it is easy to see that its dilating and contracting foliations are both La-
grangian.

Anosov flows are very chaotic. For example, they admit often plenty of dense
orbits and periodic orbits. In addition, orbits of different types mix together in a
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random way. We know that the geodesic flows of hyperbolic manifolds are Anosov.
The charm is that small Euler-Lagrange perturbations of such flows remain to be
Anosov. So in spite of of its internal beauty, the study of Anosov flows may be
useful in our understanding of nature.

Based on a series of important works [G], [K], [FK] and [BFL] etc, we believe
that dilating and contracting foliations of Anosov flows are rarely smooth. In
my ph.D. thesis (see [F]), Anosov flows with smooth foliations are studied in
detail. One of our results is the following classification of transversely symplectic
Anosov flows with smooth foliations of dimension 5. Recall that in [FK], such
5-dimensional flows have also been studied.

Theorem 2.1 Let φt be a 5-dimensional transversely symplectic Anosov flow.
If its dilating and contracting foliations are both C∞, then up to finite covers and
a constant change of time scale, φt is C∞ flow equivalent either to a special time
change of the geodesic flow of a closed 3-dimensional hyperbolic manifold, or to
the suspension of a symplectic hyperbolic automorphism of T4.

Recall that a special time change of φt is just the flow of a vector field of form
X

1+α(X) , where α is a C∞ closed 1-form on M such that 1 + α(X) > 0. The proof
of this result is to be published in [F1] (see also my thesis [F]).

Corollary 2.1 Let φt be a 5-dimensional Euler-Lagrange (or magnetic)
flow. If it is Anosov with C∞-foliations, then up to finite covers and a constant
change of time scale, φt is C∞ flow equivalent to a special time change of the
geodesic flow of a closed 3-dimensional hyperbolic manifold.

Proof . — We have seen that Euler-Lagrange (or magnetic) flows are trans-
versely symplectic. So by Theorem 2.1, we get two possibilities. Since φt is Anosov,
then by [CIPP], φt is defined on a manifold diffeomorphic to T 1N . The topology
of T 1N is different from that of the suspension manifold of T4. So we deduce the
conclusion.

In [HuK], the following elegant result is proved.

Theorem 2.2 (S. Hurder-A. Katok) Let φt be a 3-dimensional volume-
preserving flow. If φt is Anosov with C2-foliations, then φt must have C∞-
foliations.

By combining the results above with our results concerning quasi-conformal
Anosov flows, we get the following result of similar type. Even though this result
is not optimal, our idea is different from that of Hurder and Katok.

Proposition 2.1 Let φt be a 5-dimensional Euler-Lagrange flow. If φt is
Anosov with C32-foliations, then up to finite covers and a constant change of time



110 Y. FANG

scale, φt is C∞ flow equivalent to a special time change of the geodesic flow of a
closed 3-dimensional hyperbolic manifold.

In particular, φt must have C∞-foliations.

Proof . — Since the dilating and contracting foliations of φt are supposed to
be C32, then it is enough for the arguments of Theorem 2.1 to go through (see
also [BFL] and [BFL1]). However we can only conclude that up to finite covers,
φt is C31-orbit equivalent either to the geodesic flow of a closed 3-dimensional
hyperbolic manifold, or to the suspension of a hyperbolic automorphism of T4.

By simple topological considerations, we can see that the second case is im-
possible for Euler-Lagrange flows. So up to finite covers, φt is C31-orbit equivalent
to the geodesic flow of a closed 3-dimensional hyperbolic manifold.

We deduce that φt is quasi-conformal and has the sphere-extension property
(see Section 3 below and [F3] for details). Since in addition, φt is with C32-
foliations, then by [F3], we deduce that φt is, up to finite covers and a constant
change of time scale, C∞ flow equivalent to a special time change of the geodesic
flow of a 3-dimensional hyperbolic manifold. So φt is with C∞-foliations (see
Chapter 4 of my thesis [F]).

3. Complex transversely symplectic Anosov flows

In this section, we consider complex transversely symplectic Anosov flows de-
fined on closed connected manifolds of real dimension 5. An Anosov flow is said
to be complex transversely symplectic if its orbit foliation admits a transversal
(holonomy-invariant) holomorphic symplectic structure. By the classical theorem
of Darboux, this transversal structure is locally isomorphic to (C2, dz1 ∧ dz2). Re-
call also that an holomorphic Riemannian metric is by definition a non-degenerate
C-bilinear symmetric holomorphic tensor. For example, (C2, dz1 · dz2).

We know that there are rarely holomorphic geometric structures on compact
complex manifolds (see [IKO] and [D]). The central, though quite simplified, rea-
son is that there exist only trivial holomorphic functions on compact complex
manifolds, i.e. the maximum principle.

On the other hand, we know that transversely holomorphic foliations could
be rigid. For example, 1-dimensional transversely holomorphic foliations defined
on closed 3-dimensional manifolds are classified in [B] and [G2].

By combing these two kinds of rigidity ideas, we study chaotic (more precisely,
Anosov) 1-dimensional transversely holomorphic symplectic foliations defined on
closed 5-dimensional manifolds. Our central, though trivial, idea is to replace
maximum principle by dynamics and our result is the following.

Theorem 3.1 Let φt be a 5-dimensional Anosov flows. Then the following
statements are equivalent.
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1. φt admits transversally an holomorphic symplectic structure.

2. φt admits transversally an holomorphic Riemannian metric.

3. Up to finite covers and a constant change of time scale, φt is C∞-orbit
equivalent either to the geodesic flow of a closed 3-dimensional hyperbolic manifold,
or to the suspension of a hyperbolic automorphism of the complex tori.

Although general Anosov flows are very soft, under certain conditions, they
may be rigid. For example, if they have smooth foliations, then they should be rigid
(i.e. classifiable). Another way to produce rigidity is to suppose quasi-conformity
(see [G1], [S], [F2] and [F3]). Let us recall firstly the definition.

An Anosov flow φt is said to be quasi-conformal if the following two functions
are bounded, K± : M × R → R, such that

K±(x, t) =
Sup{‖ Dφt(u) ‖ | ‖ u ‖= 1, u ∈ Esu(ss)

x }
Inf{‖ Dφt(u) ‖ | ‖ u ‖= 1, u ∈ Esu(ss)

x }
.

For example, holomorphic functions defined on C are quasi-conformal. We deduce
easily from this fact the following lemma.

Lemma 3.1 Let φt be a 5-dimensional transversely holomorphic Anosov flow.
Then φt is quasi-conformal.

Since φt is transversely holomorphically symplectic, then it is easy to see that
φt preserves a volume form. Thus by [S] and [F2], we know that Esu ⊕ RX and
Ess ⊕ RX are both C∞. These two distributions are known to be also integrable
to C0-foliations with C∞-leaves, which are called respectively weak dilating and
weak contracting foliations.

On each local transverse Σ, by intersecting weak dilating and weak contracting
foliations with Σ, we obtain two C∞-foliations on Σ, which are called respectively
Σ-dilating and Σ-contracting foliations. The following simple lemma makes the
situation much more comfortable.

Lemma 3.2 Let φt be an Anosov flow admitting a transverse holomorphic
symplectic structure. Then on each local transverse Σ, the Σ-dilating and Σ-
contracting foliations are both holomorphic.

Proof . — Since φt is transversally holomorphic symplectic, then each local
transverse is locally equivalent to C2. It is easy to see that the leaves of Σ-dilating
and Σ-contracting foliations are all complex. In this way, we get a φt-invariant
C0-conformal structure along the leaves of dilating foliation of φt, which is denoted
by τ+. It is evident that τ+ is C∞ along the dilating leaves.

By [S], we can see that Σ-contracting holonomy maps are holomorphic. Thus
we can define naturally on local transverses a complex structure using intersecting
Σ-dilating and Σ-contracting leaves.
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This complex structure coincides evidently with the initial complex structure
because they have the same underlying almost complex structure. In addition, Σ-
dilating and Σ-contracting foliations are certainly holomorphic by definition with
respect to this complex structure.

Proof of the equivalence between (1) and (2). — Suppose firstly that φt

admits a transverse holomorphic symplectic structure ω. Since φt is Anosov, then
Σ-dilating and Σ-contracting leaves are all Lagrangian with respect to ω. Thus
by Lemma 3.2, we can define a transverse holomorphic Riemannian structure as
following:

g(u+, v+) = g(u−, v−) = 0, g(u+, u−) = g(u−, u+) = ω(u+, u−).

Inversely, we can define as following a transverse holomorphic structure ω
from a transverse holomorphic Riemannian metric g:

ω(u+, v+) = ω(u−, v−) = 0, ω(u+, u−) = −ω(u−, u+) = g(u+, u−).

Proof of the equivalence between (2) and (3). — Suppose that φt admits a
transverse holomorphic Riemannian metric g. Since φt is Anosov and volume-
preserving, then φ admits a dense orbit. So the complex sectional curvature of g is
constant. Thus locally g is, up to a dilatation, isomorphic to one of the following
two models:

1. (C2, dz1 · dz2). The connected component of the group of holomorphic
isometries is C2 ! C∗.

2. ((CP 2×CP 2)"∆, dz1·dz2
(z1−z2)2

), where ∆ denotes the diagonal. The connected
component of the group of holomorphic isometries is PSL(2, C), which acts by
fractional maps.

So φt admits a transverse (G, X)-structure. By [S], we can see that the con-
formal structure τ+ defined in Lemma 3.2 is complete along the leaves of dilating
foliation, i.e. each leaf is isomorphic to C. So the developing map sends each
dilating leaf onto the corresponding isotropy leaf of the model space. Now we can
use exactly the same argument as in [F3] to prove (3).

Inversely, if (3) is true, then it is easily checked that φt is transversely holo-
morphically Riemannian. Recall just that (CP 2 × CP 2)"∆ is the lifted geodesic
space of H3 and PSL(2, C) is the connected component of the isometry group of
H3.

4. Remarks

This exposition comes from my desire to understand the interactions between
certain geometries and dynamics. In Sections 1. and 2, we tried to compare 4-
dimensional symplectic geometry with 5-dimensional transversely symplectic flows.
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If the flow is chaotic, then what we can view is a dynamical 4-dimensional sym-
plectic manifold.

We have several meaningful examples of such transversely symplectic flows
and global invariants are needed to push further the understanding of such flows.

In section 3, we tried to compare holomorphic symplectic surfaces with chaotic
5-dimensional transversely holomorphic symplectic flows. We proved the rigidity
of such flows in the Anosov case. In addition, we believe that 5-dimensional
transversely holomorphic Anosov flows are also rigid.

Because of our personal preference, we have worked exclusively on the Anosov
case. However, in this case, dynamic seems to be too strong and dominates com-
pletely the transverse geometry. So rigidity is often obtain, which is, though
elegant, rather dispointing from geometric point of view.

So it will be interesting for me to find and understand meaningful situations
where (symplectic or complex) geometry and dynamics live together and no one
dominates the other. For example, holomorphic automorphisms of K3-surfaces
studied by S. Cantat seem to be rather satisfactory and pleasant with respect to
the point of view of this remark.
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S. Dumitrescu, C. Tarquini, C. Boubel, for interesting discussions and attentions.
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minimizing measures and Mané’s critical values, GAFA, 8 (1998) 788–809.

[D] S. Dumitrescu, Métriques riemanniennes holomorphesen petite dimension, Ann. Inst.
Fourier, 51, 6 (2001), 1663–1690.
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