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Galois extensions of height-one commuting
dynamical systems

par Ghassan SARKIS et Joel SPECTER

Résumé. Nous considérons un système dynamique constitué
d’une paire de séries formelles commutant pour la composition,
l’une non inversible et l’autre inversible d’ordre infini, de hau-
teur 1 à coefficients dans les entiers p-adiques. En supposant que
chaque point du système dynamique engendre une extension ga-
loisienne du corps Qp, nous montrons que ces extensions sont en
fait abéliennes, et, à partir des résultats de la théorie du corps des
normes, nous montrons que le système dynamique doit contenir
une série d’ordre fini. À partir d’un résultat précédent, cela montre
que les deux séries formelles doivent être des endomorphismes d’un
groupe formel de hauteur 1.

Abstract. We consider a dynamical system consisting of a pair
of commuting power series under composition, one noninvertible
and another nontorsion invertible, of height one with coefficients
in the p-adic integers. Assuming that each point of the dynamical
system generates a Galois extension over the base field, we show
that these extensions are in fact abelian, and, using results from
the theory of the field of norms, we also show that the dynamical
system must include a torsion series. From an earlier result, this
shows that the original two series must in fact be endomorphisms
of some height-one formal group.

1. Introduction

The study of p-adic dynamical systems has seen increased interest over
the past two decades, reflected most recently in a new MSC category: Arith-
metic and non-Archimedean dynamical systems. This note is concerned
with three overlapping ways of looking at such systems—formal power series
that commute under composition, iterated morphisms of the open p-adic
unit disc, and galoisness of extensions that are obtained by adjoining zeros
of dynamical systems. Indeed, the proof of the main result in this note can
be viewed as relating commuting power series to formal groups, analytic
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maps of the open unit disk to locally analytic galois automorphisms, and
galois towers to automorphism subgroups of residue fields.

1.1. Notation and motivation. Our power series have no constant term
in order for composition to be well defined and finitary. Also, their lin-
ear coefficients are nonzero to exclude trivial cases. We adopt therefore
some of the notation of [9]. For a commutative ring R, let S0(R) = {g ∈
R[[x]] | g(0) = 0 and g′(0) 6= 0}, and let G0(R) = {g ∈ S0(R) | g′(0) ∈ R×}
be the group of series that are invertible under composition. For n ∈ N, let
g◦n be the n-fold iterate of the power series g with itself under composition.
If g ∈ G0(R), then g◦n is defined for n ∈ Z; if g′(0) = 1, then g◦n is defined
for n ∈ Zp.

Suppose F is a finite extension of Qp with ring of integers O, maximal
ideal m, and residue field κ = O/m. Denote by vF the unique additive
valuation on any algebraic extension of F normalized so that vF (F×) = Z;
for simplicity, vp will be used instead of vQp . Let malg be the maximal ideal
in the integral closure of O in F alg, an algebraic closure of F .

The Newton Polygon of g(x) =
∑
aix

i ∈ O[[x]], denoted N (g), is the
convex hull of the sequence of points (i, vF (ai)). If N (g) has a segment of
horizontal length ` and slope λ, then g has, counting multiplicity, precisely
` roots in F alg of F -valuation −λ. We are interested in roots that lie in malg;
these correspond to segments of the Newton polygon of negative slope. To
that end, we define N−(g) to be the portion of N (g) consisting of segments
whose slopes are negative.

Let ḡ(x) =
∑
āix

i ∈ κ[[x]] be the coefficientwise reduction of g to κ. The
Weierstrass degree of ḡ, denoted ordx(ḡ), is defined to equal∞ if ḡ = 0, and
min{i | āi 6= 0} otherwise; the Weierstrass degree of g is defined to equal
ordx(ḡ). The p-adic Weierstrass Preparation Theorem (WPT) asserts that
if ordx(ḡ) < ∞ then there exists a unique factorization g(x) = P (x)U(x),
where P (x) ∈ O[x] is monic of degree ordx(ḡ) and U(x) ∈ O[[x]] has a
multiplicative inverse, and hence no zeroes in malg. The roots of P (x) and
g(x) in malg coincide; consequently, so do N (P ) and N−(g). See [6, Chapter
IV] for a more details on Newton polygons.

If f, u ∈ S0(O) such that f is noninvertible and u is nontorsion invertible,
let

Λf (n) = {π ∈ malg | f◦n(π) = 0} and Λf = ∪n≥0Λf (n);
Λu(n) = {π ∈ malg | u◦pn(π) = π} and Λu = ∪n≥0Λu(n).

Let Ωf (n) = Λf (n)\Λf (n− 1). Observe that Ωf (n+ 1) consists of roots of
f(x)− π as π ranges through Ωf (n).

Although formal groups are not prominent in our results, they pro-
vide part of the motivation, which we discuss briefly next. We will call
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f, u ∈ S0(O) a commuting pair if f is noninvertible, u is nontorsion in-
vertible, and f ◦ u = u ◦ f . Commuting pairs share certain characteristic
properties with formal group endomorphisms. For example, Λf = Λu by
[9, Proposition 3.2]. Also, ordx(f̄) is either infinite or a power of p by [9,
Main Theorem 6.3]. Both of these results are important properties of formal
group endomorphisms. Thus, Lubin suggested that commutativity may be
enough to indicate the existence of “a formal group somehow in the back-
ground” [9, page 341]. Counterexamples to naïve statements and proofs
of special cases of this conjecture are both known, though a general case
remains elusive. For a more detailed discussion of the issues involved in a
precise statement of the conjecture, see [12].

Let e = p − 1 if p > 2 and e = 2 if p = 2. The following special case
of Lubin’s conjecture, proven in [12, Theorem 1.1], makes use of a torsion
third series of order e in the dynamical system:

Theorem 1.1. Let f, u, z ∈ S0(Zp) such that f, u is a commuting pair
with ordx(f̄) = p and vp(f ′(0)) = vp(u′(0) − 1) = 1, and if p = 2 then
additionally v2(u′(0)2 − 1) = 3. Suppose also that z is torsion of order e
and commutes with f . Then there exists a formal group G over Zp such
that f, u, z ∈ EndZp(G).

It is a straightforward corollary to this theorem that Qp(π)/Qp is Galois
for all π ∈ Λf . We will show that, conversely, the Galoisness of Qp(π)/Qp

is sufficient to guarantee the existence of a torsion series of order e.
We will call a commuting pair f, u ∈ S0(Zp) minimal when ordx(f̄) = p,

vp(f ′(0)) = 1, and vp(u′(0)− 1) = 1 if p > 2 and vp(u′(0)− 1) = 2 if p = 2.
Note that the condition on vp(u′(0) − 1) when p = 2 is slightly different
than the one in [12] and Theorem 1.1, though the two are equivalent in the
contexts we consider. Our main result is the following:

Main Theorem 1.2. Suppose f, u ∈ S0(Zp) is a minimal commuting pair.
If Qp(π)/Qp is Galois for each π ∈ Λf , then there exists a torsion series
z ∈ S0(Zp) of order e commuting with f and u.

Remark 1.3. By [9, Propositions 1.1 and 1.2], there exists a unique power
series Lf (x) ∈ G0(Qp) for which L′f (0) = 1 and Lf ◦ f = f ′(0)Lf . And for
each a ∈ Qp there exists a unique [a]f ∈ G0(Qp) such that [a]′f (0) = a and
[a]f ◦ f = f ◦ [a]f . Let ζe be a primitive eth root of unity, and let z = [ζe]f .
In order to prove our main result, we need show only that z ∈ G0(Zp).

The main theorem asserts that when f, u is a minimal commuting pair
for which each torsion point π generates a Galois extension Qp(π)/Qp, then
the situation is almost identical to when f̄(x) = xp, that is, when there is
a Lubin-Tate formal group in the background. The simplest case of the
main theorem is f(x) = (1 + x)p − 1, u(x) = (1 + x)1+p − 1, and z(x) =
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(1+x)ζp−1−1. These series are endomorphisms of the multiplicative formal
group Gm(x, y) = (1 + x)(1 + y) − 1. More generally, when f̄(x) = ϕ(xp)
for some invertible ϕ, the main theorem would imply that Qp(Λf ) is still
a maximal, totally ramified, abelian extension, and so can be defined via a
uniformizer of Qp by a Lubin-Tate formal group.

Our proof will rely on embedding Gal(Qp(Λf )/Qp) into the normalizer of
ū in the monoid S0(Fp), and so in Section 2 we make use of some powerful
results from the theory of the fields of norms to describe this normalizer.
In Section 3, we study the extensions Qp(π)/Qp for π ∈ Λf under the
assumption that they are Galois; we show that the Galois groups of these
extensions are abelian and use them to construct a torsion series of order
e over Fp that commutes with f̄ and ū. We complete the proof of the main
result in Section 4.

2. Roots and fixed points

The Nottingham group Nott(κ) = {g(x) ∈ S0(κ) | g′(0) = 1} is the group
of normalized automorphisms of the field κ((x)). Some of its subgroups (like
the one generated by ū, as we show in this section) arise as images of Galois
groups under the field-of-norms functor. The Nottingham Group has also
elicited interest among group theorists because every countably-based pro-
p groups can be embedded in it, and as such, it contains elements of order
pn for all n; the shape of such torsion elements will be important for the
proof of our main result when p = 2. See [1, 5] for more information about
the Nottingham group and its subgroups, [2, 3] for the original construction
of the field of norms, and [7] for applications of the field of norms to p-adic
dynamical systems.

If ω ∈ Nott(κ), let in(ω) = ordx(ω◦pn(x) − x) − 1. This sequence of
integers, called the lower ramification numbers of ω, measures the rapidity
with which ω◦pn approaches the identity. According to Sen’s Theorem [13], if
ω◦p

n(x) 6= x then in(ω) ≡ in−1(ω) mod pn. Let e(ω) = lim
n→∞

(p−1)in/pn+1.
In light of Sen’s Theorem, e(ω) is finite in those cases when ω◦pn approaches
the identity as slowly as possible. The factor p− 1 normalizes e(ω) so that,
when finite, it is an integer.

Let Aω = {ω◦a | a ∈ Zp} be the closed subgroup of Nott(κ) generated
by ω. The separable normalizer of Aω is given by Normsep

κ (Aω) = {ϑ ∈
κ[[x]] | ϑ′ 6= 0 and ϑ ◦ ω = ν ◦ ϑ for some ν ∈ Aω}. By [7, Proposition 5.5],
Normsep

κ (Aω) is in fact a group. If e(ω) < ∞, then by [7, Théorème 5.9],
Normsep

κ (Aω) is an extension of a finite group of order dividing e(ω) by Aω.
These results use the theory of the fields of norms extensively, and we in
turn make ample use of them after we show below that e(ū) = e, allowing
us to apply [7, Théorème 5.9] to Aū.
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2.1. The lower ramification numbers of ū. Continue to denote by
F a finite extension of Qp with ring of integers O, maximal ideal m, and
residue field κ.

Lemma 2.1. Suppose f ∈ S0(O) such that ordx(f̄) = p and vF (f ′(0)) = 1.
Then the roots of f◦n in malg are simple for all n. Moreover, if π ∈ Ωf (n)
then F (π)/F is a totally ramified extension of degree (p− 1)pn−1, and π is
a uniformizer in F (π).

Proof. Using WPT, write f(x) = P0(x)U0(x). Note that Ωf (1) consists
of the roots of P0(x)/x. By the hypothesis on f , N (P0(x)/x) consists of
a single segment from (0, 1) to (p − 1, 0). So P0(x)/x is a degree p − 1
Eisenstein polynomial over O. Therefore, the roots of P0(x)/x are simple,
each with F -valuation 1/(p− 1), and each generating a degree p− 1 totally
ramified extension of F .

Proceeding by induction, assume that the result holds for some n ≥ 0.
Let π ∈ Ωf (n). Using WPT again, write f(x) − π = Pn(x)Un(x), where
Pn(x) ∈ (O[π])[x] is a polynomial whose Newton polygon consists of a
single segment from (0, 1) to (p, 0); that is, Pn(x) is a degree p Eisenstein
polynomial over O[π]. Thus, the roots of f(x)−π are simple, each of F (π)-
valuation 1/p, and each generating a degree p totally ramified extension of
F (π). Finally, if π′ ∈ Ωf (n) with π′ 6= π, then the roots of f(x) − π and
f(x)− π′ are distinct. �

Lemma 2.2. Suppose f ∈ S0(O) such that ordx(f̄) = p and vF (f ′(0)) = 1.
Let π ∈ Ωf (1). Then F (π)/F is Galois. Also, for a fixed primitive p−1 root
of unity ζp−1, and for each 0 ≤ i ≤ p−2, there exists a unique π(i) ∈ Ωf (1)
such that π(i) ≡ ζip−1π mod m2.

Proof. Using WPT as in Lemma 2.1, write f = P0U0. Note that vp(P ′0(0)) =
1 and P0(x) ≡ xp mod p. Therefore, P0 is an endomorphism of a height-
one formal O-module (see [11]). Since the roots of f and P0 coincide, the
result follows. �

Corollary 2.3. Gal(F (π)/F ) is cyclic of order p− 1.

Proof. The Galois group is generated by π 7→ π(1). �

We next quote [12, Lemma 1.2] for reference.

Lemma 2.4. Suppose g1, g2 ∈ S0(O) such that 0< vF (g′1(0)) = vF (g′2(0))<
∞, and every root of g1 in malg is also a root of g2 of at least the same
multiplicity. Suppose further that g1 /∈ S0(m). Then N−(g1) = N−(g2), and
so the roots of g1 and g2 in malg coincide.

Lemma 2.5. Suppose f, u ∈ S0(Zp) is a minimal commuting pair. Let
δ = 1 if p > 2 and δ = 2 if p = 2. Then Λf (δ) = Λu(0).
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Proof. If π is a nonzero root of f , then u(f(π)) = f(u(π)) = 0. Thus u(π) is
another nonzero root of f , and by the hypothesis on u′(0), it is in fact of the
form u(π) = π + π2d for some d ∈ Zp[[π]]. By Lemma 2.2, u(π) = π(0) = π.
So Λf (1) ⊂ Λu(0). If p > 2, then Λf (1) = Λu(0) by Lemma 2.4.

If p = 2, then Λf (1) ( Λu(0), and so Λu(0) contains elements of Λu = Λf
other than the roots of f . The dotted line in Figure 2.1 corresponds to
the smallest possible slope of the second segment of N−(u(x) − x). Let
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Figure 2.1. N−(u(x)− x)

γ ∈ Ωf (k) be a fixed point of u with k > 1 (that is, γ /∈ Λf (1)), and
let β = f◦k−2(γ). Thus β ∈ Ωf (2). Observe that u(β) = u(f◦k−2(γ)) =
f◦k−2(u(γ)) = f◦k−2(γ) = β. Since |Ωf (2)| = 2, u must then fix the other
element of Ωf (2) as well. Therefore, Ωf (2) ⊂ Λu(0). By Lemma 2.4, Λf (2) =
Λu(0). �

Proposition 2.6. Suppose f, u ∈ S0(Zp) is a minimal commuting pair.
Let δ = 1 if p > 2 and δ = 2 if p = 2. For all n ≥ δ, if π ∈ Ωf (n), then
u◦i(π) = u◦j(π) if and only if pn−δ | j − i. Moreover, Λf (n) = Λu(n− δ).
Proof. By Lemma 2.5, Λf (δ) = Λu(0); and if π ∈ Ωf (δ) then u◦i(π) = π
for all i ≥ 0. Proceeding by induction on n, assume that the result holds
for some n ≥ δ. Let π ∈ Ωf (n + 1), so that f◦n−δ+1(π) ∈ Ωf (δ). For
any i ≥ 0 we have u◦i(f◦n−δ+1(π)) = f◦n−δ+1(π) = f◦n−δ+1(u◦i(π)), so
u◦i(π) ∈ Ωf (n+1). Suppose that for some i and j we have u◦i(π) = u◦j(π),
and so u◦(j−i)(π) = π. If i 6= j, write j−i = rps with p - r. Applying Lemma
2.4 to u◦ps(x)− x and u◦rps(x)− x, we get u◦ps(π) = π. This is impossible
if s ≤ n− δ, since π /∈ Λf (n) = Λu(n− δ) ⊇ Λu(s). Thus {u◦i(π) | 0 ≤ i ≤
pn−δ+1−1} constitute the pn−δ+1 distinct roots of f◦n−δ+1(x)−f◦n−δ+1(π),
and u◦pn−δ+1(π) = π. Therefore, Λf (n+ 1) ⊆ Λu(n− δ+ 1). By Lemma 2.4,
Λf (n+ 1) = Λu(n− δ + 1), concluding the proof. �

Corollary 2.7. Suppose f, u ∈ S0(Zp) is a minimal commuting pair. Then
e(ū) = e. In particular, Normsep

Fp (Aū) is an extension of a finite group of
order dividing e by Aū.
Proof. By WPT we have in(ū) + 1 = |Λu(n)| = |Λf (n + δ)| = pn+δ. So
e(ū) = limn→∞(p − 1)(pn+δ − 1)/pn+1 = (p − 1)pδ−1 = e. The rest of the
result follows by an application of [7, Théorème 5.9] to Aū. �
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3. Abelian extensions and torsion series

Consider the following notation:
Kn = Qp(Λf (n)) K = ∪n≥1Kn

Gn = Gal(Kn/Qp) G = lim
←

Gn = Gal(K/Qp)

For the remainder of the note, we will assume that for each n, Kn is gener-
ated by any single element of Ωf (n), or equivalently, Qp(π)/Qp is Galois for
all π ∈ Λf . In this section, we show that G is abelian, and that ū commutes
with a torsion series of order e.

Call a sequence {πn}n≥0 of elements in Λf f -consistent if π0 = 0, π1 6= 0,
and f(πn+1) = πn for all n ≥ 0 (see [9, Page 329]); in particular, πn ∈ Ωf (n)
for all n > 0. By Lemma 2.1, for n > 0, Kn/Qp is a totally ramified Galois
extension of degree (p− 1)pn−1.

Fix an f -consistent sequence {πn}n≥0 and let un ∈ Gn be defined by
un(πn) = u(πn). Since the coefficients of u are fixed by un, we have uin(πn) =
u◦i(πn) for all i. Clearly, u1 is trivial, as are G1 and u2 if p = 2.

Lemma 3.1. Suppose f, u ∈ S0(Zp) is a minimal commuting pair, and
Qp(π)/Qp is Galois for all π ∈ Λf .

(1) If p > 2, then the Sylow p-subgroup of Gn is cyclic and generated
by un for all n ≥ 1.

(2) If p = 2, then Gn contains a cyclic subgroup of order 2n−2 generated
by un for all n ≥ 2.

In both cases, un+1|Kn = un, and so u = lim
←

un generates a normal procyclic
subgroup of G of index e.

Proof. The result follows immediately form Proposition 2.6. With δ = 1 if
p > 2 and δ = 2 if p = 2, we have uin = 1 ⇐⇒ u◦i(πn) = πn ⇐⇒ pn−δ | i,
and so |un| = pn−δ. Also, un+1(πn) = un+1(f(πn+1)) = f(un+1(πn+1)) =
f ◦ u(πn+1) = u ◦ f(πn+1) = un(πn). �

Remark 3.2. Let π ∈ Ωf (n). The Galoisness of Qp(π)/Qp is equivalent to
the following: for each g ∈ G there exists a g ∈ G0(Zp) such that g(π) =
g(π). As such, all the Galois automorphisms are “locally analytic.” On the
other hand, the relation between u, un, and u suggests that at least some of
the Galois automorphisms are “globally analytic”; in fact, our main result
aims to show that they all are. We take a step in that direction by partially
extending the relation between u, un, and u to other elements of the Galois
group. For g ∈ G, write g(πn) =

∑∞
i=1 ci,nπ

i
n, where the coefficients ci,n

are Teichmüller representatives, and let gn(x) =
∑∞
i=1 ci,nx

i. Note that
gi(πn) = g◦in (πn) for all i. We will call the sequence {gn} the realization of
g. Let Γ = {

∑∞
i=1 cix

i ∈ S0(Zp) | cpi = ci}. The topology of Zp[[x]] induced
by the additive Z-valued valuation vx is equivalent to the product topology
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of ZN
p where each copy of Zp has the discrete topology. Tychonoff’s theorem

thus implies that Γ is a compact subset of Zp[[x]]. So {gn} must have an
accumulation point g ∈ Γ.

Lemma 3.3. Suppose g, h ∈ G and g, h ∈ S0(Zp) such that for some π ∈ K,
g(π) = g(π) and h(π) = h(π). Then gh(π) = h ◦ g(π).

Proof. A direct computation yields the result: gh(π) = g(h(π)) = h(g(π)) =
h ◦ g(π). �

Lemma 3.4. Suppose h1, h2 ∈ Zp[[x]] and k is an integer such that h1(πn) ≡
h2(πn) mod πkn for infinitely many n. Then h̄1(x) ≡ h̄2(x) mod xk.

Proof. If h̄1 6= h̄2, write h̄1(x) ≡ h̄2(x) + d̄xm mod xm+1 for some d ∈ Z×p
and m > 0. Pick n large enough so that vp(πm+1

n ) ≤ 1 and h1(πn) ≡
h2(πn) mod πkn. Then h1(πn) ≡ h2(πn) + dπm mod πm+1

n , which implies
m ≥ k. �

Lemma 3.5. With the the notation of Remark 3.2, suppose {gn} is a real-
ization of g ∈ G with an accumulation point g. If ug = gut for some t ∈ Zp
then ḡ ◦ ū = ū◦t ◦ ḡ. In particular, ḡ ∈ NormFp(Aū)

Proof. Note that Lemma 3.1 guarantees ug = gut for some t ∈ Zp. By
Lemma 3.3, ug(πn) = gn ◦ u(πn) and gut(πn) = u◦t ◦ gn(πn) for all n. Let
{gn`} be a subsequence of {gn} which converges to g. Given k > 0, pick
l large enough such that if ` ≥ l then g(x) ≡ gn`(x) mod xk. Thus, if
` ≥ l, we have the following congruences mod πkn` : g ◦ u(πn`) ≡ ug(πn`) =
gut(πn`) ≡ u◦t ◦ g(πn`). Lemma 3.4 implies ḡ ◦ ū ≡ ū◦t ◦ ḡ mod xk. Since k
was arbitrary, our result follows. �

3.1. Proof that G is abelian if p > 2.

Lemma 3.6. Suppose p > 2, f, u ∈ S0(Zp) is a minimal commuting pair,
and Qp(π)/Qp is Galois for all π ∈ Λf . Then for all n ≥ 1 there exists an
automorphism wn ∈ Gn of order p− 1, and wn+1|Gn = wn.

Proof. Following Lemma 2.2 and Corollary 2.3, let ζp−1 be a primitive p−1
root of unity, and let w1 be the generator of G1 given by w(π1) ≡ ζp−1π1
mod π2

1. Proceeding by induction, suppose for some n ≥ 1 there exists a
wn ∈ Gn of order p − 1. Let ŵn+1 ∈ Gn+1 be any lifting of wn, and let
wn+1 = ŵpn

n+1. �

Let w = lim
←

wn ∈ G. Clearly, w has order p− 1.

Lemma 3.7. Suppose p > 2, f, u ∈ S0(Zp) is a minimal commuting pair,
and Qp(π)/Qp is Galois for all π ∈ Λf . Let ρn = w(πn). Then {ρn} is an
f -consistent sequence, and ρn ≡ ζp−1πn mod π2

n for all n ≥ 1.
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Proof. The f -consistency of {ρn} can be verified directly: f(ρn+1) =
f(w(πn+1)) = w(f(πn+1)) = w(πn) = ρn.

Lemma 2.2 provides the second part of the result for n = 1, so we proceed
by induction on n. Suppose that for some n ≥ 1, ρn ≡ ζp−1πn mod π2

n. By
Lemma 2.1,

vp(π2
n) = 2/(pn−1(p− 1)) > vp(πp+1

n+1) = (p+ 1)/(pn(p− 1)),

and so ρn ≡ ζp−1πn mod πp+1
n+1. By our hypothesis on the commuting

pair, f(x) ≡ axp mod (p, xp+1) for some a ∈ Z×p . And by Lemma 2.1,
vp(πp+1

n+1) = vp(ρp+1
n+1) = (p + 1)/(pn(p − 1)) < 1 = vp(p). Thus, ρn =

f(ρn+1) ≡ aρpn+1 mod πp+1
n+1. Finally, ζp−1πn = ζp−1f(πn+1) ≡ ζp−1aπ

p
n+1

mod πp+1
n+1. Therefore, aρ

p
n+1 ≡ ζp−1aπ

p
n+1 mod πp+1

n+1, which implies our
result. �

Proposition 3.8. Suppose p > 2 and f, u ∈ S0(Zp) is a minimal commut-
ing pair. If Qp(π)/Qp is Galois for all π ∈ Λf then G ∼= Zp−1 × Zp. In
particular, G is abelian.

Proof. Recall from Lemma 3.1 that 〈u〉 ∼= Zp is a normal subgroup of
G of index p − 1. Therefore, wuw−1 = ut for some t ∈ Zp. Moreover,
wuw−1 = wpuw−p = ut

p . So t must be a p − 1 root of unity. We will
complete the proof by showing that t ≡ 1 mod p, and hence t = 1.

Following Lemma 3.7, write ρ2 = ζp−1π2 +c2π
2
2 +c3π

3
2 + · · · with ci ∈ Zp.

Recall from the hypothesis on the commuting pair and Lemma 2.5 that
u(x) ≡ x + bxp mod (p, xp+1) for some b ∈ Z×p , and so u◦t(x) ≡ x + tbxp

mod (p, xp+1). The following congruences are mod πp+1
2 .

ρ2 + bζp−1π
p
2 ≡ ρ2 + bρp2 ≡ u(ρ2)

= u(w(π2)) = w(u(π2)) = wu(π2) = utw(π2)
≡ ut(ζp−1π2 + c2π

2
2 + c3π

3
2 + · · · )

= ζp−1u
t(π2) + c2u

t(π2)2 + c3u
t(π2)3 + · · ·

= ζp−1u
◦t(π2) + c2u

◦t(π2)2 + c3u
◦t(π2)3 + · · ·

≡ ζp−1(π2 + tbπp2) + c2π
2
2 + c3π

3
2 + · · ·

= ρ2 + tbζp−1π
p
2 .

Therefore, t ≡ 1 mod p, concluding the proof. �

Corollary 3.9. Suppose p > 2. Then Gn
∼= Zp−1 × Zpn−1.

3.2. Proof that G is abelian if p = 2.

Proposition 3.10. Suppose p = 2 and f, u ∈ S0(Z2) is a minimal com-
muting pair. If Q2(π)/Q2 is Galois for all π ∈ Λf , then G is abelian.
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Proof. By [9, Corollary 6.2.1], write f̄(x) = ϕ(x2) where ϕ(x) ∈ G0(F2).
Observe that ϕ and ū commute.

If ϕ ∈ Aū, then ϕ = ū◦t for some t ∈ Z2. Therefore, u◦−t ◦ f is congruent
to x2 mod 2, and its linear coefficient is a uniformizer in Z2. In other words,
u◦−t◦f is an endomorphism of a rank-one formal Z2-module (see [11]). Since
f and u commute with u◦−t ◦ f , they must both be endomorphisms of the
same formal module. Our result follows.

If ϕ /∈ Aū, then by [7, Théorème 5.9] and Corollary 2.7, Normsep
Fp (Aū)

must be abelian. By Lemma 3.5, G must be abelian as well. �

Suppose F/Q2 is a totally ramified Galois extension, π is a uniformizer
of the ring of integers of F , and g ∈ Gal(F/Q2). Following the notation of
[14, Chapter IV], let iGal(F/Q2)(g) = vF (g(π)− π); that is, iGal(F/Q2) is one
more than the order function of the filtration defined by the ramification
groups of Gal(F/Q2).

Corollary 3.11. If p = 2, then G ∼= Z2 × Z2, and for n ≥ 2, Gn
∼=

Z2 × Z2n−2.

Proof. By Lemma 3.1 and Proposition 3.10, it is sufficient to show thatG3 is
not cyclic. There exist eight totally ramified quartic cyclic extensions F/Q2,
given by F = Q2

(√
α(2 + β)

)
, where α ∈ {1, 3, 5, 7} and β ∈ {

√
2,
√
−6}

(see [4, Lemma IX.4]). The only element g ∈ Gal(F/Q2) of order 2 is g :√
α(2 + β) 7→ −

√
α(2 + β), and so iGal(F/Q2)(g) = vF

(
2
√
α(2 + β)

)
= 5.

However, |u3| = 2 by Lemma 3.1, and iG3(u3) = ordx(ū(x) − x) = 4 by
Proposition 2.6. �

Remark 3.12. The f -consistent sequence defined in Lemma 3.7 for p > 2
has an analogue for p = 2: let w be the element of order 2 in G, and
define ρn = w(πn). For each n, write the πn-adic expansion of ρn as
ρn =

∑∞
i=1 ci,nπ

i
n, where c1,n = 1, and ci,n ∈ {0, 1} for all i. Let wn(x) =∑∞

i=1 ci,nx
i. Recall from Remark 3.2 that {wn} is a realization of w in the

compact set Γ, and so it has a convergent subsequence {wn`} with accu-
mulation point w.

Corollary 3.13. Suppose p = 2. Then wn(x) ≡ x+ x2 mod x3 for all n,
and so w(x) ≡ x+ x2 mod x3 as well.

Proof. Let wn = w|Kn . Since K3/Q2 is biquadratic, a direct computation
shows that the nonidentity elements of G3 have iG3-values 2, 2, and 4.
As seen in the proof of Corollary 3.11, iG3(u3) = 4. Thus iG3(w3) =
iG3(w3u3) = 2. Proceeding by induction, suppose that iGn(wn) = 2 for
some n ≥ 3. By [14, Chapter IV, Proposition 3],

iGn(wn) =
(
iGn+1(wn+1) + iGn+1(wn+1u

2n−2
n+1 )

)
/2.
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But iGn+1(g) ≥ 2 for all g ∈ Gn+1. So iGn+1(wn+1) = iGn+1(wn+1u
2n−2
n+1 )= 2.

�

3.3. Torsion series over Fp. Let w ∈ G be an element of order e as
described in Lemma 3.7 and Remark 3.12, with realization {wn} and accu-
mulation point w. We end this section by studying w̄ in more detail.

Proposition 3.14. Suppose f, u ∈ S0(Zp) is a minimal commuting pair,
and Qp(π)/Qp is Galois for all π ∈ Λf . Then w̄ commutes with ū. Moreover,
w̄ is torsion of order e = e(ū).

Proof. For k > 0, pick l such that if ` > l then vp(πk+1
n`

) ≤ 1 and
vx(w − wn`) ≥ k + 1.

By Lemma 3.3, wu(πn) = u ◦ wn(πn) and uw(πn) = wn ◦ u(πn) for all
n. Also, wu = uw since G is abelian. Thus, if ` > l, then u ◦ w(πn`) ≡
u ◦ wn(πn`) = wn ◦ u(πn`) ≡ w ◦ u(πn`), where the congruences are mod
πk+1
n`

. By Lemma 3.4, ū ◦ w̄ ≡ w̄ ◦ ū mod xk+1. Since k was arbitrary, it
follows that ū ◦ w̄ = w̄ ◦ ū .

If ` > l, then πn` = we(πn`) = w◦en (πn`) ≡ w◦e(πn`) mod πk+1
n`

. By
Lemma 3.4, w̄◦e(x) ≡ x mod xk+1. Since k was arbitrary, we see that the
order of w̄ divides e. If p > 2, then the order is exactly p− 1 because w′(0)
is a primitive p− 1 root of unity by Lemma 3.7. If p = 2, then the order of
w̄ is 2 by Corollary 3.13. �

Corollary 3.15. Normsep
Fp (Aū) = 〈w̄〉 × Aū; in particular, Normsep

Fp (Aū) is
abelian.

Proof. By Corolary 2.7, Normsep
Fp (Aū) is an extension of a finite group of

order dividing e by Aū, and 〈w̄〉 × Aū ≤ Normsep
Fp (Aū). �

Corollary 3.16. Suppose θ ∈ G0(Fp) is a torsion series of order e that
commutes with ū. If θ′(0) = w̄′(0) then θ = w̄. In particular, w̄ is indepen-
dent of the choice of accumulation point of {wn}.

Proof. Each of the series θ and w̄ generates the unique order-e subgroup of
Normsep

Fp (Aū). �

By [9, Corollary 6.2.1], the noninvertible half of a commuting pair must
be of the form f̄(x) = ϕ(xp) for some ϕ ∈ G0(Fp).

Corollary 3.17. The power series w̄ and ϕ commute.

Proof. Both w̄ and ϕ are elements of the abelian group Normsep
Fp (Aū). �

If p = 2, then w̄ ∈ Nott(F2). Torsion elements of the Nottingham group
are well understood and well behaved. For instance, all torsion elements of
Nott(Fp) have order pd for some d. Moreover, since any pro-p group can
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be embedded in Nott(Fp), then in fact there exists a torsion element of
order pd for every d. Two torsion elements of order p, x + ax` + · · · and
x+ bxm + · · · , are conjugate over Nott(Fp) if and only if a = b and ` = m.
In [10], the results of [5] are generalized to all d ≥ 1 via local-class-field-
theoretic methods that associate to torsion elements of Nott(Fp) certain
characters on 1 + xFp[[x]], and explicit elements of any order are exhibited.

Corollary 3.18. Suppose p = 2. Then w̄(x) is conjugate over G0(Fp) to∑∞
i=1 x

i.

Proof. This follows directly from [5, Proposition 3.3]. �

4. Proof of main result

Recall that {πn} is a fixed f -consistent sequence, w ∈ G is an automor-
phism of order e, and ρn = w(πn) is f -consistent as well. The proof of the
main result will rely on the relationship between the valuation of ρn−g(πn)
for some g ∈ G0(Zp) and the extent to which the series g commutes with
f . We explore that relation in more detail in the next three lemmas. Write
f(x) =

∑
aix

i.

Lemma 4.1. Suppose g ∈ S0(Zp) with f ◦ g ≡ g ◦ f mod xk+1 for some
k > 0. Suppose further that, for some n > 0, ρn ≡ g(πn)+cπmn mod πm+1

n ,
where c ∈ Z×p and m 6= pn−1. Then mp ≥ min{vKn(ρn−1−g(πn−1)), k+1}.
The inequality is strict if vKn(apπmpn ) > vKn(a1π

m
n ).

Proof. Write ρn = g(πn) + cπmn +Dπm+1
n for some D ∈ Zp[[πn]]. Then

f(ρn) =
∞∑
i=1

ai(g(πn) + cπmn +Dπm+1
n )i

= f(g(πn)) + a1cπ
m
n + ap(cπmn )p +D1pπ

m+1
n +D2(πm+1

n )p

for some D1, D2 ∈ Zp[[πn]]. Since m 6= pn−1, then

pn−1(p− 1) +m = vKn(a1cπ
m
n ) 6= vKn(ap(cπmn )p) = mp

and so vKn(f(ρn) − f(g(πn))) = min{vKn(a1cπ
m
n ), vKn(ap(cπmn )p)}. But

f(ρn)− f(g(πn)) = ρn−1− g(πn−1) +Mπk+1
n for some M ∈ Zp[[πn[]. There-

fore,

mp ≥ min{vKn(a1cπ
m
n ), vKn(ap(cπmn )p)}(4.1)

= vKn(f(ρn)− f(g(πn)))
= vKn(ρn−1 − g(πn−1) +Mπk+1

n )
≥ min{vKn(ρn−1 − g(πn−1)), k + 1}

Finally, if vKn(apπmpn ) > vKn(a1π
m
n ) then (4.1) is a strict inequality. �
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Lemma 4.2. Let δ = 1 if p > 2 and δ = 2 if p = 2. Suppose g ∈ G0(Zp).
For each c ∈ Z×p and n ≥ δ there exists a unique integer 1 ≤ j ≤ p − 1
depending on c̄, g′(0), and n such that g ◦u◦jpn−δ(πn+1) ≡ g(πn+1)− cπp

n

n+1
mod πp

n+1
n+1 .

Proof. By Proposition 2.6, ordx(ū◦pn−δ(x) − x) = pn. Write u◦pn−δ(x) −
x =

∑∞
i=1 bix

i. Thus, bpn ∈ Z×p , and if 1 ≤ i < pn then vKn+1(biπin+1) ≥
pn(p−1)+ i > pn. So u◦pn−δ(πn+1) ≡ πn+1 + bpnπ

pn

n+1 mod πp
n+1
n+1 . A direct

computation then shows u◦jpn−δ(πn+1) ≡ πn+1 + jbpnπ
pn

n+1 mod πp
n+1
n+1 . So

the proof is completed by solving for j in jbpng′(0) ≡ −c mod p. �

Lemma 4.3. Suppose h ∈ G0(Zp) such that h′(0) = ζp−1 if p > 2 and
h̄(x) ≡ x + x2 mod x3 if p = 2. If f ◦ h(x) − h ◦ f(x) ≡ 0 mod xk+1,
then there exists ` ∈ Zp such that vKn(ρn − h ◦ u◦`(πn)) ≥ (k + 1)/p
for all n. The inequality is strict if vKn(apπmpn ) > vKn(a1π

m
n ). Moreover,

vKn(ρn − h ◦ u◦`(πn)) 6= pn−1.

Proof. We will construct a Cauchy sequence of integers {`n} for which
vKs(ρs − h ◦ u◦`n(πs)) ≥ (k + 1)/p whenever s ≤ n.

Let `1 = 0. If ρ1 = h(π1) the result follows trivially. If not, write ρ1 ≡
h(π1) + cm,1π

m
1 mod πm+1

1 for some cm,1 ∈ Z×p . Note that m > 1 = p0

by Lemma 2.2 and so p − 1 + m < mp. Therefore, by Lemma 4.1, mp >
min{vK1(0), k + 1} = k + 1.

If p = 2, let `2 = 0 as well. The result follows trivially if ρ2 = h(π2).
Otherwise, write ρ2 ≡ h(π2)+cm,2πm2 mod πm+1

2 for some cm,2 ∈ Z×2 . Note
that m > 2 by Corollary 3.13, and so 2(2 − 1) + m < 2m. Therefore, by
Lemma 4.1, 2m > min{vK2(ρ1 − h(π1)), k + 1} = min{2vK1(ρ1 − h(π1)),
k + 1} = k + 1.

Let δ = 1 if p > 2 and δ = 2 if p = 2. Suppose that for some n ≥ δ there
exists an integer `n for which vKs(ρs − h ◦ u◦`n(πs)) ≥ (k + 1)/p whenever
s ≤ n. If ρn+1 − h ◦ u◦`n(πn+1) ≡ cπp

n

n+1 mod πp
n+1
n+1 for some c ∈ Z×p ,

then by Lemma 4.2 there exists a 1 ≤ jn+1 ≤ p − 1 such that h ◦ u◦`n ◦
u◦jn+1pn−δ(πn+1) ≡ h◦u◦`n(πn+1)−cπp

n

n+1 mod πp
n+1
n+1 . If on the other hand

vKn+1(ρn+1− h ◦ u◦`n(πn+1)) 6= pn, let jn+1 = 0. Let `n+1 = `n + jn+1p
n−δ.

If ρn+1 = h◦u◦`n+1(πn+1) then the result follows trivially. Otherwise, write
ρn+1 − h ◦ u◦`n+1(πn+1) ≡ cm,n+1π

m
n+1 mod πm+1

n+1 for some cm,n+1 ∈ Z×p .
Observe that if s < n + 1, then u◦p

n−δ(πs) = πs by Proposition 2.6, so
that u◦`n+1(πs) = u◦`n(πs). The choice of jn+1 guarantees that m 6= pn.
Therefore, by Lemma 4.1, mp ≥ min{vKn+1(ρn − h ◦ u◦`n+1(πn)), k + 1} =
min{vKn+1(ρn−h◦u◦`n(πn)), k+1} = min{pvKn(ρn−h◦u◦`n(πn)), k+1} =
k + 1, and the inequality is strict if vKn+1(apπmpn+1) > vKn+1(a1π

m
n+1). �
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We are now ready to complete the proof of Theorem 1.2. Recall from Re-
mark 1.3 that if ζe is a primitive eth root of unity, then z(x) =

∑∞
i=1 dix

i =
[ζe]f (x) = L◦−1

f (ζeLf (x)) ∈ G0(Qp) is the unique e-torsion series with lin-
ear coefficient d1 = ζe that commutes with f and u. Let zk(x) =

∑k
i=1 dix

i

and continue to write f(x) =
∑∞
i=1 aix

i. Clearly, z1(x) = ζex ∈ G0(Zp) and
z1 ◦ f ≡ f ◦ z1 mod x2. Moreover, if p = 2 and z2(x) = −x + d2x

2, then
f ◦ z2 ≡ z2 ◦ f mod x3 implies d2 = 2a2/(a2

1 − a1) ∈ Z×2 .
The proof of our main result, that z ∈ G0(Zp), will proceed inductively.

As before, let δ = 1 if p > 2 and δ = 2 if p = 2. Suppose for some k ≥ δ that
zk ∈ G0(Zp) and zk ◦f ≡ f ◦ zk mod xk+1. For zk+1(x) = zk(x) +dk+1x

k+1

to commute with f(x) mod xk+2, we must have
dk+1(ak+1

1 − a1)xk+1 ≡ f ◦ zk(x)− zk ◦ f(x) mod xk+2

Therefore, our proof will be completed once we show that f̄ ◦ z̄k(x) −
z̄k ◦ f̄(x) ≡ 0 mod xk+2, which we do next.

Proposition 4.4. Let δ = 1 if p > 2 and δ = 2 if p = 2. Suppose zk ∈
G0(Zp) with z′k(0) = ζe for some k ≥ δ. If p = 2, suppose also that z̄2(x) =
x+x2. If f ◦ zk(x)− zk ◦ f(x) ≡ 0 mod xk+1 then f̄ ◦ z̄k(x)− z̄k ◦ f̄(x) ≡ 0
mod xk+2.

Proof. Write f ◦ zk(x)− zk ◦ f(x) ≡ dxk+1 mod xk+2 for some d ∈ Zp.
If p - k + 1 then d ∈ pZp by [9, Corollary 6.2.1].
If p | k + 1, let m = (k + 1)/p. By Lemma 4.3, there exists ` ∈ Zp such

that, for all n, ρn ≡ zk ◦ u◦`(πn) + cnπ
m
n mod πm+1

n , and if m = pn−1 then
cn = 0.

Let N = min{n | vKn(a1π
m
n ) > vKn(apπmpn )}; note that N ≥ 2. By

Lemma 4.3 again, cN−1 = 0. Moreover, for all n ≥ N , we have mod πmp+1
n :

ρn−1 ≡ zk ◦ u◦`(πn−1) + cn−1π
m
n−1

= zk ◦ u◦`(f(πn)) + cn−1f(πn)m

≡ zk ◦ u◦`(f(πn)) + cn−1(apπpn)m

and

ρn−1 = f(ρn)
≡ f(zk ◦ u◦`(πn) + cnπ

m
n )

≡ f(zk ◦ u◦`(πn)) + ap(cnπmn )p

Therefore, f(zk ◦ u◦`(πn)) + ap(cnπmn )p ≡ zk ◦ u◦`(f(πn)) + cn−1(apπpn)m
mod πpm+1

n , and so

cn ≡
zk ◦ u◦`(f(πn))− f(zk ◦ u◦`(πn))

apπ
mp
n

+ cn−1a
m−1
p mod πn
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Observe that zk ◦ u◦` ◦ f(x) − f ◦ zk ◦ u◦`(x) ≡ 0 mod xmp, and so the

fraction α = zk ◦ u◦`(f(πn))− f(zk ◦ u◦`(πn))
apπ

mp
n

is independent of πn mod

πn. Iterating the congruence cn ≡ α + cn−1a
m−1
p mod πn, we get cn ≡

α
∑n
i=N a

(m−1)(n−i)
p mod πn. But

∑n
i=N a

(m−1)(n−i)
p ≡ 0 mod p for infin-

itely many n, and so too cn ≡ 0 mod p and ρn ≡ zk ◦ u◦`(πn) mod πm+1
n

for infinitely many n. Thus by Lemma 3.4, w̄(x) ≡ z̄k ◦ ū◦`(x) mod xm+1.
Now recall that w̄ commutes with ϕ by Corollary 3.17. So 0 = ϕ◦ w̄(x)−

w̄ ◦ϕ(x) ≡ ϕ ◦ z̄k ◦ ū◦`(x)− z̄k ◦ ū◦` ◦ϕ(x) = ϕ ◦ z̄k ◦ ū◦`(x)− z̄k ◦ϕ(x) ◦ ū◦`
mod xm+1. Thus ϕ ◦ z̄k(x)− z̄k ◦ ϕ(x) ≡ 0 mod xm+1, and so

0 ≡ ϕ ◦ z̄k(xp)− z̄k ◦ ϕ(xp) mod xmp+1,

yielding our desired result since mp = k + 1 and ϕ(xp) = f̄(x). �

Acknowledgments

The second author would like to thank David Pollack for reading a pre-
liminary version these results and making valuable comments.

References
[1] R. Camina, Subgroups of the Nottingham group. J. Algebra 196 (1997), no. 1, 101–113.
[2] J.-M. Fontaine, J.-P. Wintenberger, Le “corps des normes” de certaines extensions

algébriques de corps locaux. C. R. Acad. Sci. Paris 288 (1979), 367–370.
[3] J.-M. Fontaine, J.-P. Wintenberger, Extensions algébriques et corps des normes des

extensions APF des corps locaux. C. R. Acad. Sci. Paris 288 (1979), 441–444.
[4] G. Klaas, C. R. Leedham-Green, W. Plesken, Linear Pro-p-groups of Finite Width.

Lecture Notes in Mathematics 1674 (Springer-Verlag), 1997.
[5] B. Klopsch, Automorphisms of the Nottingham group. J. Algebra 223 (2000), no. 1, 37–56.
[6] N. Koblitz, p-adic numbers, p-adic analysis, and zeta-functions. Springer, New York, 1977.
[7] F. Laubie, A. Movahhedi, A. Salinier, Systèmes dynamiques non archimédiens et corps

des normes. Compos. Math. 132 (2002), 57–98.
[8] J. Lubin, One-parameter formal Lie groups over P-adic integer rings. Ann. Math. 80

(1964), 464–484.
[9] J. Lubin, Nonarchimedean dynamical systems. Compos. Math. 94 (1994), 321–346.
[10] J. Lubin Torsion in the Nottingham group. Bull. Lond. Math. Soc. 43 (2011), 547–560.
[11] J. Lubin, J. Tate, Formal complex multiplication in local fields. Ann. Math. 81 (1965), no.

2, 380–387.
[12] G. Sarkis, Height one commuting dynamical systems over Zp. Bull. Lond. Math. Soc. 42

(2010), no. 3, 381–387.
[13] S. Sen, On automorphisms of local fields. Ann. of Math. (2) 90 (1969), 33–46.
[14] J.-P. Serre, Local Fields. Springer, New York, 1979.
[15] J.-P. Wintenberger, Extensions abéliennes et groupes dÕautomorphismes de corps locaux.

C.R. Acad. Sci. Paris 290 (1980), 201–203.



178 Ghassan Sarkis, Joel Specter

Ghassan Sarkis
Pomona College
610 North College Avenue
Claremont, CA 91711, USA
E-mail: ghassan.sarkis@pomona.edu

Joel Specter
Northwestern University
2033 Sheridan Road
Evanston, IL 60208, USA
E-mail: jspecter@math.northwestern.edu

mailto:ghassan.sarkis@pomona.edu
mailto:jspecter@math.northwestern.edu

	1. Introduction
	1.1. Notation and motivation

	2. Roots and fixed points
	2.1. The lower ramification numbers of 

	3. Abelian extensions and torsion series
	3.1. Proof that G is abelian if p>2
	3.2. Proof that G is abelian if p=2
	3.3. Torsion series over Fp

	4. Proof of main result
	Acknowledgments
	References

