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Random Galois extensions of Hilbertian fields

par Lior BARY-SOROKER et Arno FEHM

Résumé. Soit L une extension galoisienne d’un corps K hilber-
tien et dénombrable. Bien que L ne soit pas nécessairement hil-
bertien, nous montrons qu’il existe beaucoup de grandes sous-
extensions de L/K qui le sont.

Abstract. Let L be a Galois extension of a countable Hilbertian
field K. Although L need not be Hilbertian, we prove that an
abundance of large Galois subextensions of L/K are.

1. Introduction

Hilbert’s irreducibility theorem states that if K is a number field and f ∈
K[X,Y ] is an irreducible polynomial that is monic and separable in Y , then
there exist infinitely many a ∈ K such that f(a, Y ) ∈ K[Y ] is irreducible.
Fields K with this property are consequently called Hilbertian, cf. [4], [9],
[10].

Let K be a field with a separable closure Ks, let e ≥ 1, and write
Gal(K) = Gal(Ks/K) for the absolute Galois group of K. For an e-tuple
σ = (σ1, . . . , σe) ∈ Gal(K)e we denote by

[σ]K = 〈στν | ν = 1, . . . , e and τ ∈ Gal(K)〉
the closed normal subgroup of Gal(K) that is generated by σ. For an alge-
braic extension L/K we let

L[σ]K = {a ∈ L | aτ = a, ∀τ ∈ [σ]K}
be the maximal Galois subextension of L/K that is fixed by each σν , ν =
1, . . . , e. We note that the group [σ]K , and hence the field L[σ]K , depends
on the base field K.

Since Gal(K)e is profinite, hence compact, it is equipped with a proba-
bility Haar measure. In [7] Jarden proves that if K is countable and Hilber-
tian, then Ks[σ]K is Hilbertian for almost all σ ∈ Gal(K)e. This provides
a variety of large Hilbertian Galois extensions of K.

Other fields of this type that were studied intensively are the fields
Ktot,S [σ]K , where K is a number field, S is a finite set of primes of K,
and Ktot,S is the field of totally S-adic numbers over K – the max-
imal Galois extension of K in which all primes in S totally split; see for
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example [6] and the references therein for recent developments. Although
the absolute Galois group of Ktot,S [σ]K was completely determined in loc.
cit. (for almost all σ), the question whether Ktot,S [σ]K is Hilbertian or
not remained open. Note that if σ = (1, . . . , 1), then Ktot,S [σ]K = Ktot,S
is not Hilbertian, cf. [3]. Similarly, if σ1, . . . , σe generate a decomposition
subgroup of Gal(K) above a prime p of K, then Ktot,S [σ]K = Ktot,S′ , with
S′ = S ∪ {p}, is not Hilbertian.

The main objective of this study is to prove the following general re-
sult, which, in particular, generalizes Jarden’s result and resolves the above
question for Ktot,S [σ]K affirmatively.

Theorem 1.1. Let K be a countable Hilbertian field, let e ≥ 1, and let L/K
be a Galois extension. Then L[σ]K is Hilbertian for almost all σ ∈ Gal(K)e.

Jarden’s proof of the case L = Ks is based on, among other results,
Roquette’s theorem [4, Corollary 27.3.3] and Melnikov’s theorem [4, Theo-
rem 25.7.5]: Jarden proves that for almost all σ, the countable field Ks[σ]K
is pseudo algebraically closed. Therefore, by Roquette,Ks[σ]K is Hilbertian
if [σ]K is a free profinite group of infinite rank. Then Melnikov’s theorem
is applied to reduce the proof of the freeness of [σ]K to realizing simple
groups as quotients of [σ]K .

However, if L is not pseudo algebraically closed (e.g. L = Ktot,S , when-
ever S 6= ∅), then also L[σ]K is never pseudo algebraically closed. Similarly,
if Gal(L) is not projective (again for example L = Ktot,S with S 6= ∅), then
Gal(L[σ]K) is never free. Thus, it seems that Jarden’s proof cannot be ex-
tended to such fields L. Our proof utilizes Haran’s twisted wreath product
approach [5]. We can apply this approach whenever L/K has many linearly
disjoint subextensions (in the sense of Condition LK below). A combina-
torial argument then shows that in the remaining case, L[σ]K is a small
extension of K, and therefore also Hilbertian.

2. Small extensions and linearly disjoint families

Let K ⊆ K1 ⊆ L be a tower of fields. We say that L/K1 satisfies
Condition LK if the following holds:

(LK)
There exists an infinite pairwise linearly disjoint family of finite
proper subextensions of L/K1 of the same degree and Galois
over K.

If a Galois extension satisfies Condition LK , then one can find linearly
disjoint families of subextensions with additional properties:

Lemma 2.1. Let (Mi)i be a pairwise linearly disjoint family of Galois
extensions of K and let E/K be a finite Galois extension. Then Mi is
linearly disjoint from E over K for all but finitely many i.
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Proof. This is clear since E/K has only finitely many subextensions,
cf. [1, Lemma 2.5] and its proof. �

Lemma 2.2. Let K ⊆ K1 ⊆ L be fields such that L/K is Galois, K1/K is
finite and L/K1 satisfies Condition LK . Let M0/K1 be a finite extension,
and let d ≥ 1. Then there exist a finite group G with |G| ≥ d and an infinite
family (Mi)i>0 of subextensions of L/K1 which are Galois over K such that
Gal(Mi/K1) ∼= G for every i > 0 and the family (Mi)i≥0 is linearly disjoint
over K1.
Proof. By assumption there exists an infinite pairwise linearly disjoint fam-
ily (Ni)i>0 of subextensions of L/K1 which are Galois over K and of the
same degree n > 1 over K1. Iterating Lemma 2.1 gives an infinite subfamily
(N ′i)i>0 of (Ni)i>0 such that the family M0, (N ′i)i>0 is linearly disjoint over
K1. If we let

M ′i = N ′idN
′
id+1 · · ·N ′id+d−1

be the compositum, then the familyM0, (M ′i)i>0 is linearly disjoint overK1,
and [M ′i : K1] = nd > d for every i. Since up to isomorphism there are only
finitely many finite groups of order nd, there is a finite group G of order nd
and an infinite subfamily (Mi)i>0 of (M ′i)i>0 such that Gal(Mi/K1) ∼= G
for all i > 0. �

Lemma 2.3. Let K ⊆ K1 ⊆ K2 ⊆ L be fields such that L/K is Galois,
K2/K is finite Galois and L/K1 satisfies Condition LK . Then also L/K2
satisfies Condition LK .
Proof. By Lemma 2.2, applied to M0 = K2, there exists an infinite fam-
ily (Mi)i>0 of subextensions of L/K1 which are Galois over K, of the
same degree n > 1 over K1 and such that the family K2, (Mi)i>0 is lin-
early disjoint over K1. Let M ′i = MiK2. Then [M ′i : K2] = [Mi : K1] =
n, M ′i/K is Galois, and the family (M ′i)i>0 is linearly disjoint over K2,
cf. [4, Lemma 2.5.11]. �

Recall that a Galois extension L/K is small if for every n ≥ 1 there
exist only finitely many intermediate fields K ⊆M ⊆ L with [M : K] = n.
Small extensions are related to Condition LK by Proposition 2.5 below, for
which we give a combinatorial argument using Ramsey’s theorem, which
we recall for the reader’s convenience:
Proposition 2.4 ([8, Theorem 9.1]). Let X be a countably infinite set and
n, k ∈ N. For every partition X [n] =

⋃k
i=1 Yi of the set of subsets of X of

cardinality n into k pieces there exists an infinite subset Y ⊆ X such that
Y [n] ⊆ Yi for some i.
Proposition 2.5. Let L/K be a Galois extension. If there exists no finite
Galois subextension K1 of L/K such that L/K1 satisfies Condition LK ,
then L/K is small.
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Proof. Suppose that L/K is not small, so it has infinitely many subexten-
sions of degree m over K, for some m > 1. Taking Galois closures we get
that for some 1 < d ≤ m! there exists an infinite family F of Galois subex-
tensions of L/K of degree d: Indeed, only finitely many extensions of K
can have the same Galois closure.

Choose d minimal with this property. For any two distinct Galois subex-
tensions of L/K of degree d over K their intersection is a Galois subex-
tension of L/K of degree less than d over K, and by minimality of d there
are only finitely many of those. Proposition 2.4 thus gives a finite Galois
subextension K1 of L/K and an infinite subfamily F ′ ⊆ F such that for
any two distinct M1,M2 ∈ F ′, M1 ∩M2 = K1. Since any two Galois ex-
tensions are linearly disjoint over their intersection, it follows that L/K1
satisfies Condition LK . �

The converse of Proposition 2.5 holds trivially. The following fact on
small extensions will be used in the proof of Theorem 1.1.
Proposition 2.6 ([4, Proposition 16.11.1]). If K is Hilbertian and L/K is
a small Galois extension, then L is Hilbertian.

3. Measure theory

For a profinite group G we denote by µG the probability Haar measure
on G. We will make use of the following two very basic measure theoretic
facts.
Lemma 3.1. Let G be a profinite group, H ≤ G an open subgroup, S ⊆
G a set of representatives of G/H, and Σ1, . . . ,Σk ⊆ H measurable µH-
independent sets. Let Σ∗i =

⋃
g∈S gΣi. Then Σ∗1, . . . ,Σ∗k are µG-independent.

Proof. Let n = [G : H]. Then for any measurable X ⊆ H we have µH(X) =
nµG(X). Since G is the disjoint union of the cosets gH, for g ∈ S, we have
that

µG(Σ∗i ) =
∑
g∈S

µG(gΣi) = nµG(Σi) = µH(Σi)

and

µG

(
k⋂
i=1

Σ∗i

)
=
∑
g∈S

µG

(
k⋂
i=1

gΣi

)
= nµG

(
k⋂
i=1

Σi

)
=

= µH

(
k⋂
i=1

Σi

)
=

k∏
i=1

µH (Σi) =
k∏
i=1

µG (Σ∗i ) ,

thus Σ∗1, . . . ,Σ∗k are µG-independent. �

Lemma 3.2. Let (Ω, µ) be a measure space. For each i ≥ 1 let Ai ⊆
Bi be measurable subsets of Ω. If µ(Ai) = µ(Bi) for every i ≥ 1, then
µ(
⋃∞
i=1Ai) = µ(

⋃∞
i=1Bi).



Random Galois extensions of Hilbertian fields 35

Proof. This is clear since( ∞⋃
i=1

Bi

)
r
( ∞⋃
i=1

Ai

)
⊆
∞⋃
i=1

(Bi rAi),

and µ(Bi rAi) = 0 for every i ≥ 1 by assumption. �

4. Twisted wreath products

Let A and G1 ≤ G be finite groups together with a (right) action of G1
on A. The set of G1-invariant functions from G to A,

IndGG1(A) = {f : G→ A | f(στ) = f(σ)τ , ∀σ ∈ G∀τ ∈ G1} ,

forms a group under pointwise multiplication. Note that IndGG1(A)∼= A[G:G1].
The group G acts on IndGG1(A) from the right by fσ(τ) = f(στ), for all
σ, τ ∈ G. The twisted wreath product is defined to be the semidirect
product

A oG1 G = IndGG1(A) oG,

cf. [4, Definition 13.7.2]. Let π : IndGG1(A) → A be the projection given by
π(f) = f(1).

Lemma 4.1. Let G = G1 × G2 be a direct product of finite groups, let A
be a finite G1-group, and let I = IndGG1(A). Assume that |G2| ≥ |A|. Then
there exists ζ ∈ I such that for every g1 ∈ G1, the normal subgroup N of
A oG1 G generated by τ = (ζ, (g1, 1)) satisfies π(N ∩ I) = A.

Proof. Let A = {a1, . . . , an} with a1 = 1. By assumption, |G2| ≥ n, so we
may choose distinct elements h1, . . . , hn ∈ G2 with h1 = 1. For (g, h) ∈ G
we set

ζ(g, h) =
{
agi , if h = hi for some i
1, otherwise.

Then ζ ∈ I. Since G1 and G2 commute in G, for any h ∈ G2 we have

ττ−h = ζg1(ζg1)−h = ζg1 · g−1
1 ζ−h = ζζ−h ∈ N ∩ I.

Hence,

a−1
i = a1a

−1
i = ζ(1)ζ(hi)−1 = (ζζ−hi)(1)

= (ττ−hi)(1) = π(ττ−hi) ∈ π(N ∩ I).

We thus conclude that A = π(N ∩ I), as claimed. �

Following [5] we say that a tower of fields

K ⊆ E′ ⊆ E ⊆ N ⊆ N̂
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realizes a twisted wreath product A oG1 G if N̂/K is a Galois extension
with Galois group isomorphic to A oG1G and the tower of fields corresponds
to the subgroup series

A oG1 G ≥ IndGG1(A) oG1 ≥ IndGG1(A) ≥ ker(π) ≥ 1.
In particular we have the following commutative diagram:

Gal(N̂/E)
∼= //

res
��

IndGG1(A)

π

��
Gal(N/E)

∼= // A.

5. Hilbertian fields

We will use the following specialization result for Hilbertian fields:

Lemma 5.1. Let K1 be a Hilbertian field, let x = (x1, . . . , xd) be a fi-
nite tuple of variables, let 0 6= g(x) ∈ K1[x], and consider field extensions
M,E,E1, N of K1 as in the following diagram.

M ME1 ME1(x) MN

K1 E E1 E1(x) N

Assume that E,E1,M are finite Galois extensions of K1, E = E1 ∩M ,
N is a finite Galois extension of K1(x) that is regular over E1, and let
y ∈ N . Then there exists an E1-place ϕ of N such that b = ϕ(x) and ϕ(y)
are finite, g(b) 6= 0, the residue fields of K1(x), E1(x, y) and N are K1,
E1(ϕ(y)) and N̄ , respectively, where N̄ is a Galois extension of K1 which
is linearly disjoint from M over E, and Gal(N̄/K1) ∼= Gal(N/K1(x)).

Proof. E1 and M are linearly disjoint over E, and N and ME1 are linearly
disjoint over E1. We thus get that M and N are linearly disjoint over E.
Thus N is linearly disjoint from M(x) over E(x), so N ∩M(x) = E(x).

For every b ∈ Kd
1 there exists a K1-place ϕb of K1(x) with residue field

K1 and ϕb(x) = b. It extends uniquely to ME1(x), and the residue fields
of M(x) and E1(x) are M and E1, respectively.

Since K1 is Hilbertian, by [4, Lemma 13.1.1] (applied to the three sepa-
rable extensions E1(x, y), N and MN of K1(x)) there exists b ∈ Kd

1 with
g(b) 6= 0 such that any extension ϕ of ϕb to MN satisfies the following:
ϕ(y) is finite, the residue field of E1(x, y) is E1(ϕ(y)), the residue fields
MN and N of MN and N , respectively, are Galois over K1, and ϕ in-
duces isomorphisms Gal(N/K1(x)) ∼= Gal(N/K1) and Gal(MN/K1(x)) ∼=
Gal(MN/K1).
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By Galois correspondence, the latter isomorphism induces an isomor-
phism of the lattices of intermediate fields of MN/K1(x) and MN/K1.
Hence, N ∩M(x) = E(x) implies that N ∩M = E, which means that N
and M are linearly disjoint over E. �

We will apply the following Hilbertianity criterion:

Proposition 5.2 ([5, Lemma 2.4]). Let P be a field and let x be tran-
scendental over P . Then P is Hilbertian if and only if for every absolutely
irreducible f ∈ P [X,Y ], monic in Y , and every finite Galois extension P ′
of P such that f(x, Y ) is Galois over P ′(x), there are infinitely many a ∈ P
such that f(a, Y ) ∈ P [Y ] is irreducible over P ′.

6. Proof of Theorem 1.1

Lemma 6.1. Let K ⊆ K1 ⊆ L be fields such that K is Hilbertian, L/K is
Galois, K1/K is finite Galois, and L/K1 satisfies Condition LK . Let e ≥ 1,
let f ∈ K1[X,Y ] be an absolutely irreducible polynomial that is Galois over
Ks(X) and let K ′1 be a finite separable extension of K1. Then for almost
all σ ∈ Gal(K1)e there exist infinitely many a ∈ L[σ]K such that f(a, Y )
is irreducible over K ′1 · L[σ]K .

Proof. Let E be a finite Galois extension of K such that K ′1 ⊆ E and f is
Galois over E(X) and put G1 = Gal(E/K1). Let x be transcendental over
K and y such that f(x, y) = 0. Let F ′ = K1(x, y) and F = E(x, y). Since
f(X,Y ) is absolutely irreducible, F ′/K1 is regular, hence Gal(F/F ′) ∼= G1.
Since f(X,Y ) is Galois over E(X), F/K1(x) is Galois (as the compositum of
E and the splitting field of f(x, Y ) over K1(x)). Then A = Gal(F/E(x)) is
a subgroup of Gal(F/K1(x)), so G1 = Gal(F/F ′) acts on A by conjugation.

F ′
G1

F

K1(x) G1
E(x)

A

Since L/K1 satisfies Condition LK , by Lemma 2.2, applied to M0 = E,
there exists a finite group G2 with d := |G2| ≥ |A| and a sequence (E′i)i>0
of linearly disjoint subextensions of L/K1 which are Galois over K with
Gal(E′i/K1) ∼= G2 such that the family E, (E′i)i>0 is linearly disjoint over
K1. Let Ei = EE′i. Then Ei/K is Galois and Gal(Ei/K1) ∼= G := G1 ×G2
for every i.
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Let x = (x1, . . . , xd) be a d-tuple of variables, and for each i choose a
basis wi1, . . . , wid of E′i/K1. By [5, Lemma 3.1], for each i we have a tower

(6.1) K1(x) ⊆ E′i(x) ⊆ Ei(x) ⊆ Ni ⊆ N̂i

that realizes the twisted wreath product A oG1 G, such that N̂i is regular
over Ei and Ni = Ei(x)(yi), where irr(yi, Ei(x)) = f(

∑d
ν=1wiνxν , Y ).

We inductively construct an ascending sequence (ij)∞j=1 of positive inte-
gers and for each j ≥ 1 an Eij -place ϕj of N̂ij such that

(a) the elements aj :=
∑d
ν=1wijνϕj(xν) ∈ E′ij are distinct for j ≥ 1,

(b) the residue field tower of (6.1), for i = ij , under ϕj ,

(6.2) K1 ⊆ E′ij ⊆ Eij ⊆Mij ⊆ M̂ij ,

realizes the twisted wreath product A oG1 G and Mij is generated
by a root of f(aj , Y ) over Eij ,

(c) the family (M̂ij )∞j=1 is linearly disjoint over E.
Indeed, suppose that i1, . . . , ij−1 and ϕ1, . . . , ϕj−1 are already constructed
and letM = M̂i1 · · · M̂ij−1 . By Lemma 2.1 there is ij > ij−1 such that E′ij is
linearly disjoint fromM over K1. Thus, Eij is linearly disjoint fromM over
E. Since K is Hilbertian and K1/K is finite, K1 is Hilbertian. Applying
Lemma 5.1 to M , E, Eij , N̂ij , and yij , gives an Eij -place ϕj of N̂ij such
that (b) and (c) are satisfied. Choosing g suitably we may assume that
aj = ϕj(

∑d
ν=1wijνxν) /∈ {a1, . . . , aj−1}, so also (a) is satisfied.

We now fix j and make the following identifications: Gal(M̂ij/K1) = AoG1

G = I o (G1 ×G2), Gal(M̂ij/Eij ) = I, Gal(Mij/Eij ) = A. The restriction
map Gal(M̂ij/Eij )→ Gal(Mij/Eij ) is thus identified with π : A oG1 G→ A,
and Gal(M̂ij/Mij ) = ker(π). Let ζ ∈ I := IndGG1(A) be as in Lemma 4.1 and
let Σ∗j be the set of those σ ∈ Gal(K1)e such that for every ν ∈ {1, . . . , e},
σν |M̂ij

= (ζ, (gν1, 1)) ∈ I o (G1 ×G2) for some gν1 ∈ G1. Then the normal

subgroup N generated by σ|M̂ij
in Gal(M̂ij/K1) satisfies π(N ∩ I) = A.

Now fix σ = (σ1, . . . , σe) ∈ Σ∗j and let P = L[σ]K and Q = Ks[σ]K1 .
Then

P = L ∩Ks[σ]K ⊆ Ks[σ]K ⊆ Ks[σ]K1 = Q.

Since E′ij is fixed by σν , ν = 1, . . . , e, and Galois over K, we have E′ij ⊆
P ⊆ Q. Thus aj ∈ P and EijQ = EQ. Therefore, since Mij is generated
by a root of f(aj , Y ) over Eij , we get that MijQ is generated by a root of
f(aj , Y ) over EQ.



Random Galois extensions of Hilbertian fields 39

Q EijQ MijQ M̂ijQ

M̂ij ∩Q (M̂ij ∩Q)Eij (M̂ij ∩Q)Mij M̂ij

ker(π)I
N

Eij
A

Mij

The equality N = Gal(M̂ij/M̂ij ∩Q) gives

Gal(M̂ijQ/MijQ) ∼= Gal(M̂ij/(M̂ij ∩Q)Mij ) = N ∩ ker(π)
and

Gal(M̂ijQ/EijQ) ∼= Gal(M̂ij/(M̂ij ∩Q)Eij ) = N ∩ I.
Therefore,

Gal(MijQ/EijQ) ∼= (N ∩ I)/(N ∩ ker(π)) ∼= π(N ∩ I) = A.

Since |A| = degY f(X,Y ) = deg f(aj , Y ), we get that f(aj , Y ) is irre-
ducible over EQ. Finally, we have K ′1P ⊆ EP ⊆ EQ, therefore f(aj , Y ) is
irreducible over K ′1P .

It suffices to show that almost all σ ∈ Gal(K1)e lie in infinitely many
Σ∗j . Let Σj be the set of those σ ∈ Gal(E)e such that

σν |M̂ij
= (ζ, (1, 1)) ∈ I o (G1 ×G2) = Gal(M̂ij/K1)

for every ν ∈ {1, . . . , e}. This is a coset of Gal(M̂ij ). Since, by (c), the family
(M̂ij )∞j=1 is linearly disjoint over E, the sets Gal(M̂ij ) are independent for
µGal(E)e . Thus, by [4, Lemma 18.3.7], also the sets Σj are independent for
µGal(E)e . Moreover, for every g ∈ G1 = Gal(E/K1) we can fix a ĝ ∈ Gal(K1)
such that ĝ|M̂ij

= (1, (g, 1)) for every j. Then

S = {(ĝ1, . . . , ĝe) : g1, . . . , ge ∈ G1}
is a set of representatives for the right cosets of Gal(E)e in Gal(K1)e, and
Σ∗j =

⋃
g∈S Σjg for every j. Therefore, Lemma 3.1 implies that the sets Σ∗j

are independent for µ = µGal(K1)e . Moreover,

µ(Σ∗j ) = |G1|e

|A oG1 G|e
> 0

does not depend on j, so
∑∞
j=1 µ(Σ∗j ) = ∞. It follows from the Borel-

Cantelli lemma [4, Lemma 18.3.5] that almost all σ ∈ Gal(K1)e lie in
infinitely many σ ∈ Σ∗j . �
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Proposition 6.2. Let K ⊆ K1 ⊆ L be fields such that K is countable
Hilbertian, L/K is Galois, K1/K is finite Galois and L/K1 satisfies Condi-
tion LK . Let e ≥ 1. Then L[σ]K is Hilbertian for almost all σ ∈ Gal(K1)e.

Proof. Let F be the set of all triples (K2,K
′
2, f), where K2 is a finite subex-

tension of L/K1 which is Galois over K, K ′2/K2 is a finite separable exten-
sion (inside a fixed separable closure Ls of L), and f(X,Y ) ∈ K2[X,Y ] is
an absolutely irreducible polynomial that is Galois over Ks(X). Since K is
countable, the family F is also countable. If (K2,K

′
2, f) ∈ F , then K2 is

Hilbertian ([4, Corollary 12.2.3]) and L/K2 satisfies Condition LK (Lemma
2.3), hence Lemma 6.1 gives a set Σ′(K2,K′2,f) ⊆ Gal(K2)e of full measure
in Gal(K2)e such that for every σ ∈ Σ′(K2,K′2,f) there exist infinitely many
a ∈ L[σ]K such that f(a, Y ) is irreducible over K ′2 · L[σ]K . Let

Σ(K2,K′2,f) = Σ′(K2,K′2,f) ∪ (Gal(K1)e rGal(K2)e).

Then Σ(K2,K′2,f) has measure 1 in Gal(K1)e. We conclude that the measure
of Σ =

⋂
(K2,K′2,f)∈F Σ(K2,K′2,f) is 1.

Fix a σ ∈ Σ and let P = L[σ]K . Let f ∈ P [X,Y ] be absolutely ir-
reducible and monic in Y , and let P ′ be a finite Galois extension of P
such that f(X,Y ) is Galois over P ′(X). In particular, f is Galois over
Ks(X). Choose a finite extension K2/K1 which is Galois over K such that
K2 ⊆ P ⊆ L and f ∈ K2[X,Y ]. Let K ′2 be a finite extension of K2 such
that PK ′2 = P ′. Then σ ∈ Gal(K2)e. Since, in addition, σ ∈ Σ(K2,K′2,f),
we get that σ ∈ Σ′(K2,K′2,f). Thus there exist infinitely many a ∈ P such
that f(a, Y ) is irreducible over PK ′2 = P ′. So, by Proposition 5.2, P is
Hilbertian. �

Remark. The proof of Proposition 6.2 actually gives a stronger assertion:
Under the assumptions of the proposition, for almost all σ ∈ Gal(K1)e the
field Ks[σ]K1 is Hilbertian over L[σ]K in the sense of [2, Definition 7.2].
In particular, if L/K satisfies Condition LK (this holds for example for
L = Ktot,S from the introduction), then Ks[σ]K is Hilbertian over L[σ]K .

Proof of Theorem 1.1. Let K be a countable Hilbertian field, let e ≥ 1, and
let L/K be a Galois extension. We need to prove that L[σ]K is Hilbertian
for almost all σ ∈ Gal(K)e.

Let F be the set of finite Galois subextensions K1 of L/K for which
L/K1 satisfies Condition LK . Note that F is countable, since K is.

Let Ω = Gal(K)e, let µ = µΩ, and let
Σ = {σ ∈ Ω : L[σ]K is Hilbertian}.

For K1 ∈ F let ΩK1 = Gal(K1)e and ΣK1 = ΩK1 ∩ Σ. Note that
ΩK1 = {σ ∈ Ω : K1 ⊆ L[σ]K} .
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By Proposition 6.2, µ(ΣK1) = µ(ΩK1) for each K1. Let

∆ := Ω r
⋃

K1∈F
ΩK1 = {σ ∈ Ω : K1 6⊆ L[σ]K for all K1 ∈ F} .

If σ ∈ ∆, then L[σ]K/K is small by Proposition 2.5, so L[σ]K is Hilbertian
by Proposition 2.6. Thus, ∆ ⊆ Σ. Since Ω = ∆ ∪

⋃
K1∈F ΩK1 , Lemma 3.2

implies that

µ(Σ) = µ

(Σ ∩∆) ∪
⋃

K1∈F
ΣK1

 = µ

∆ ∪
⋃

K1∈F
ΩK1

 = µ(Ω) = 1,

which concludes the proof of the theorem. �
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