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Explicit L2 bounds for the Riemann ζ function

par Daniele DONA, Harald A. HELFGOTT et Sebastian Zuniga
ALTERMAN

Résumé. Des bornes explicites pour la fonction zêta ζ loin de la droite réelle
sont nécessaires pour des applications, notamment aux intégrales de ζ sur des
lignes verticales ou bien sur d’autres chemins. Ici, nous bornons des normes
L2 ponderées de la fonction zêta loin de la droite réelle.

Nous suivons deux approches, chacune donnant le meilleur ré-sultat dans
un certain rang. La première est inspirée par le théo-rème de la valeur moyenne
pour les polynômes de Dirichlet. La deuxième, supérieure pour T grand, est
basée sur des résultats classiques, en commençant par une approximation de
ζ via la formule d’Euler–Maclaurin.

Ces bornes donnent toutes les deux des termes principaux d’or-dre correct
pour 0 < σ ≤ 1. Elles sont assez fortes pour être d’utilité pratique dans le
calcul numérique rigoureux d’intégrales impropres.

Nous présentons aussi des bornes pour la norme L2 de ζ dans [1, T ] pour
0 ≤ σ ≤ 1.

Abstract. Explicit bounds on the tails of the zeta function ζ are needed for
applications, notably for integrals involving ζ on vertical lines or other paths
going to infinity. Here we bound weighted L2 norms of tails of ζ.

Two approaches are followed, each giving the better result on a different
range. The first one is inspired by the proof of the standard mean value
theorem for Dirichlet polynomials. The second approach, superior for large
T , is based on classical lines, starting with an approximation to ζ via Euler–
Maclaurin.

Both bounds give main terms of the correct order for 0 < σ ≤ 1 and are
strong enough to be of practical use for the rigorous computation of improper
integrals.

We also present bounds for the L2 norm of ζ in [1, T ] for 0 ≤ σ ≤ 1.
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1. Introduction
1.1. Motivation. Say we want to compute a line integral from σ− i∞ to
σ + i∞ involving the zeta function. Such integrals arise often in work in
number theory as inverse Mellin transforms. For example, during his work
on [14], the second author had to estimate the double sum

Dα1,α2(y) =
∑
d≤y

∑
l≤y/d

log
( y
dl

)
dα1 lα2

,

and others of the same kind. Now, it is not hard to show that

Dα1,α2(y) = 1
2πi

∫ σ+i∞

σ−i∞

ζ(s+ α1)ζ(s+ α2)
s2 ysds

for σ > 1. Let 0 < α1, α2 < 1. Shifting the line of integration to the left,
we obtain main terms coming from the poles at s = 1−α2 and s = 1−α2,
and, as a remainder term, the integral

1
2πi

∫
Rβ

ζ(s+ α1)ζ(s+ α2)
s2 ysds,

where Rβ is some contour to the left of the poles going from β − i∞ to
β + i∞.

It is possible to do rigorous numerical integration on bounded contours
in the complex plane, using, for instance, the ARB package [18]. It then
remains to bound the integral∫ β+i∞

β+iT

|ζ(s+ α1)||ζ(s+ α2)|
|s|2

ds,

the integral from β− i∞ to β− iT having the same absolute value. By the
Cauchy–Schwarz inequality, the problem reduces to that of giving explicit
bounds for the integral

(1.1)
∫ β+i∞

β+iT

|ζ(s+ α1)|2

|s|2
ds.

Finding such bounds is the main subject of this paper.

1.2. Methods and results. Convexity bounds on ζ have been known
explicitly for more than 100 years [4]. Since they are of the form ζ(σ+ it) =
O(t

1−σ
2 log t) for 0 ≤ σ ≤ 1, they imply that (1.1) converges for 0 < σ ≤ 1.

There are also explicit subconvexity bounds (that is, bounds stronger than
convexity) for σ = 1

2 ([22, 7, 30, 15]) and for 1
2 ≤ σ ≤ 1 [8].

Here, we produce better results in the L2 norm than can be obtained from
such L∞ bounds. Non-explicit bounds on the L2-norm of ζ(σ+ it) are well
known ([10], [12], [20, Vol. 2, 806–819, 905–906], [23]; see the introduction
to [16] for an exposition).
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Our main result collects in a simplified form the results in Theorems 3.1
and 4.6.

Theorem 1.1. Let 0 < σ ≤ 1. Then, the integral
∫∞
T

∣∣ ζ(σ+it)
σ+it

∣∣2dt is bounded
as follows

(1) if σ = 1, by

π2

6 ·
1
T

+ 28.3 · log T
T 2 for T ≥ 200;

(2) if 1
2 < σ < 1, by

3πζ(2σ)
5 · 1

T
+
(

18.98− 0.61
σ − 1

2

)
· 1
T 2σ for T ≥ 200,

ζ(2σ) · 1
T

+ 12.95(
σ − 1

2
)
(1− σ)

· 1
T 2σ for T ≥ 4;

(3) if σ = 1
2 , by

3π
5 ·

log T
T

+ 7.72 · 1
T

for T ≥ 200,

log T
T

+ 9.2 ·
√

log T
T

for T ≥ 1040;

(4) if 0 < σ < 1
2 , by(

0.5
σ

+ 0.95
1
2 − σ

+ 5.62
)
· 1
T 2σ − 2.55ζ(2σ) · 1

T
for T ≥ 200,

ζ(2− 2σ)
2σ(2π)1−2σ ·

1
T 2σ + 20.7

σ2(1
2 − σ

) · 1
T

for T ≥ 4.

In each pair of bounds above, the second one is stronger for large T and
fixed σ. The first bounds in cases (2), (3), (4) are obtained by a method
explained in Section 3, based on the fact that the Mellin transform is an
isometry. The second set of bounds and the single bound in case (1) use
a different approach, explained in Section 4; it is based on the following
explicit bounds on the L2 norm of the restriction of ζ(σ+ it) to a segment.
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Theorem 1.2. Let 0 ≤ σ ≤ 1 and T ≥ 4. Then, the integral
∫ T

1 |ζ(σ+ it)|2dt
is bounded from above by

π2

6 · T + 18.49 ·
√
T if σ = 1,

ζ(2σ) · T + 5.22(
σ − 1

2
)
(1− σ)2 ·max{T 2−2σ log T,

√
T} if 1

2 < σ < 1,

T log T + 2.0 · T
√

log T + 23.06 · T if σ = 1
2 ,

ζ(2− 2σ)
(2π)1−2σ(2− 2σ) · T

2−2σ + 10.35
σ2(1

2 − σ
) · T if 0 < σ <

1
2 ,

π

24 · T
2 + 9.37 · T log T if σ = 0.

The error terms above are not optimal: bounds with the correct co-
efficient for the second-order term (and a non-explicit lower-order term)
are known; for σ = 1

2 , see Ingham [16], Titchmarsh [36], Atkinson [3], and
Balasubramanian [5] (vd. Heath-Brown [13] for an L2 estimate of the lower-
order term, and Good [9] for a lower bound on its order). For 1

2 < σ < 3
4 ,

an estimate was given by Matsumoto [24], later extended by Matsumoto
and Meurman [26] to 1

2 < σ < 1. We will be more precise in Theorems 4.3
and 4.5.

It would seem feasible to improve on Theorem 1.2 by starting from Atkin-
son’s formula for σ = 1

2 , or Matsumoto–Meurman’s for 1
2 < σ < 1, estimat-

ing all terms while foregoing cancellation. One could then deduce a bound
for 0 < σ < 1

2 by the functional equation, as in Theorem 4.5 here. For
σ = 1

2 , yet another possibility would be to attempt to make the work of
Titchmarsh or Balasubramanian explicit.

An exposition of these alternative procedures (in their current non-
explicit versions) can be found in [25, §1]. They are based on the approxi-
mate functional equation, or the Riemann–Siegel formula, which is closely
related. Shortly after the appearance of the original version of the present
paper, Simonič provided an explicit bound in [35, Cor. 5] for the case σ = 1

2 ,
improving on Theorems 1.2 and 4.3 for T large enough.

For the sake of rigor, we have used interval arithmetic throughout, im-
plemented by ARB [18], which we used via Sage.

Acknowledgments. Thanks are due to F. Aryan, J. Bajpai, J. Brüdern,
F. Petrov, O. Ramaré, A. Simonič, and M. Young.

2. Classical foundations revisited
2.1. O and O∗ notation. When we write f(x) = O(g(x)) as x→ a (a =
±∞ is allowed) for a real or complex valued function f and a real valued
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function g, we mean that there is a constant C such that |f(x)| ≤ Cg(x) in
a neighborhood of a. We write f(x) = O∗(h(x)) to mean that |f(x)| ≤ h(x)
(either for all x or in an explicitly stated neighborhood of a).

2.2. Bernoulli polynomials. We define the Bernoulli polynomials Bk :
R → R inductively: B0(x) = 1 and for k ≥ 1, Bk(x) is determined by
B′k(x) = kBk−1(x) and

∫ 1
0 Bk(x) = 0. The k-th Bernoulli number bk is the

constant term of Bk(x). In particular, B1(x) = x− 1
2 and B2(x) = x2−x+ 1

6 .

Lemma 2.1 ([29, Cor. B.4, Exer. B.5(e)]). For k ≥ 1, maxx∈[0,1] |B2k(x)| =
|b2k| and maxx∈[0,1] |B2k+1(x)| < 2(2k+1)!

(2π)2k+1 . In general, for every k ≥ 2,

(2.1) max
x∈[0,1]

|Bk(x)| ≤ 2ζ(k)k!
(2π)k .

2.3. Euler–Maclaurin summation formula. Bernoulli polynomials ap-
pear naturally in the Euler–Maclaurin summation formula.

Theorem 2.2 (Euler–Maclaurin). Let K be a positive integer. Let X < Y
be two real numbers such that the function f : [X,Y ] → C has continuous
derivatives up to the K-th order on the interval [X,Y ]. Then

(2.2)
∑

X<n≤Y
f(n) =

∫ Y

X
f(x)dx+S(K)− (−1)K

K!

∫ Y

X
BK({x})f (K)(x)dx,

where

(2.3) S(K) =
K∑
k=1

(−1)k

k!
(
Bk({Y })f (k−1)(Y )−Bk({X})f (k−1)(X)

)
,

and Bk : [0, 1]→ R is the k-th Bernoulli polynomial.

The reader may refer to [29, App. B] for a proof of Theorem 2.2.

Corollary 2.3. Let X ≥ 1 be an arbitrary real number. Let K be a positive
integer. For every s = σ + it ∈ C such that σ > 1−K and s 6= 1, we have

ζ(s) =
∑
n≤X

1
ns

+ X1−s

s− 1 +
(
{X} − 1

2

) 1
Xs

+
K∑
k=2

ak(s)Bk({X})
k!Xs+k−1 − aK+1(s)

K!

∫ ∞
X

BK({X})
xs+K

dx,

where ak(s) = s(s+ 1) . . . (s+ k − 2) for k ≥ 2.

For σ > 1, Corollary 2.3 is a direct application of Theorem 2.2 upon
defining f : [X,Y ] → C, as x 7→ x−s, <(s) > 1, and letting Y → ∞. We
extend the statement to σ > 1−K by analytic continuation.
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We consider Theorem 2.2 into a broader class of functions than CK . The
following formulation (from [14, §3.1]) improves slightly on a constant value:
it replaces the factor 1

12 , coming from a direct application of Theorem 2.2
with K = 2, by a factor of 1

16 .

Lemma 2.4 (Improved Euler–Maclaurin summation formula of second
order). Let f : [0,∞) → C be a continuous, piecewise C1 function such
that f , f ′, f ′′ are in L1([0,∞)). Then

(2.4)
∞∑
n=1

f(n) =
∫ ∞

0
f(x)dx− f(0)

2 − lim
t→0+

f ′(t)
16 +O∗

( 1
16‖f

′′‖1
)
.

Here and elsewhere (for instance in Proposition 3.2), we mean f ′′ and
‖f ′′‖1 in the sense of distributions or measures, so that ‖f ′′‖1 stands for
the total variation of the function f ′ on the interval [0,∞). If f is in C2,
this is the same as the usual meaning.

Proof. As f has bounded total variation, f(x) converges to a real num-
ber R as x → ∞. If R were non-zero, then f could not be in L1; thus
limx→∞ f(x) = 0. By the same reasoning, since f ′ is differentiable and
f ′, f ′′ are in L1, we have limx→∞ f

′(x) = 0.
Suppose first that f ′ is continuous at the positive integers. Let F (x)

be a differentiable function with F ′(x) = x − 1
2 . Then

∫ 1
0 F

′(x)dx = 0,
F (0) = F (1), and so, by integration by parts,∫ n

n−1
f(x)dx = f(n)

2 − f(n− 1)
2 −

∫ n

n−1
f ′(x)F ′({x})dx

= f(n)
2 − f(n− 1)

2 − (f ′(n)− f ′(n− 1))F (0) +
∫ n

n−1
f ′′(x)F ({x})dx,

where we write f ′(0) for limt→0+ f ′(t). Therefore,
∫ n

0 f(x)dx equals
n∑
k=1

f(k)− f(n)
2 + f(0)

2 − f ′(n)F (0) + f ′(0)F (0) +
∫ n

0
f ′′(x)F ({x})dx.

By using the fact that limn→∞ f(n) = limn→∞ f
′(n) = 0, we obtain finally

that

(2.5)
∞∑
n=1

f(n) =
∫ ∞

0
f(x)dx− f(0)

2 − f ′(0)F (0)

+O∗
(∫ ∞

0
|f ′′(x)||F ({x})|dx

)
.

It remains to choose F with F ′(x) = x − 1
2 such that maxx∈[0,1] |F (x)| is

minimal. We take F (x) = 1
2

(
x2 − x+ 1

8

)
, in which case maxx∈[0,1] |F (x)| =

1
16 . We obtain (2.4).
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Finally, suppose that f ′ not continuous at all the positive integers. Since
there are countably many points in which f is not differentiable, there are
only countably many x ∈ R such that f is not differentiable at n+ x for at
least one n ∈ Z>0. Thus, there is a sequence {εk}∞k=1 with limk→∞ εk = 0
such that the functions fk : x 7→ f(x+ εk) are differentiable at all positive
integers. Then, by the above, (2.4) holds for all of these functions. Since f ′ ∈
L1([0,∞)), dominated convergence gives us that

∑∞
n=1 fk(n)→

∑∞
n=1 f(n)

as k → ∞. It is clear that limk→∞ limt→0+ f ′k(t) = limk→∞ limt→0+ f ′(t +
εk) = limt→0+ f ′(t), because the last limit exists. Obviously,

∫∞
0 fk(x)dx→∫∞

0 f(x)dx as k → ∞ and ‖f ′′k ‖1 ≤ ‖f ′′‖1 for all k. We let k → ∞ and
obtain that f satisfies (2.4). �

2.4. The Mellin transform. Let f : [0,∞) → C. Its Mellin transform
is defined asMf(s) =

∫∞
0 f(x)xs−1dx for all s such that the integral con-

verges absolutely. It is a Fourier transform up to changing variables, so a
version of Plancherel’s identity holds:

(2.6)
∫ ∞

0
|f(x)|2x2σ−1dx = 1

2π

∫ ∞
−∞
|Mf(σ + it)|2dt,

provided that f(x)xσ−
1
2 is in L2([0,∞)) and f(x)xσ−1 is in L1([0,∞)).

For f continuous and piecewise C1, by integration by parts,

(2.7) Mf ′(s) = −(s− 1)Mf(s− 1).

In particular, we have that M1(0,a](s) = as

s , where 1S denotes the in-
dicator function of a set S. Considering now f(x) =

∑∞
n=1 an1(0,1/n](x),

where A(s) =
∑∞
n=1

an
ns is a Dirichlet series converging in the half-plane

{s ∈ C | <(s) > σc}, we observe that

Mf(s) =
∞∑
n=1

∫ ∞
0

an1(0,1/n](x)xs−1dx =
∞∑
n=1

an

∫ 1/n

0
xs−1dx = A(s)

s
,

in the set {s ∈ C | <(s) > max{0, σc}}. As the above holds for every Dirich-
let series, we have, for the function J(x) =

∑∞
n=1 1(0,1/n](x) = b1/xc, the

equality

(2.8) MJ(s) = ζ(s)
s
,

which is valid for the set {s ∈ C | <(s) > 1}. Moreover, for a general function
f , the function f̃ : x 7→ f(nx) has Mellin transformMf̃(s) = Mf(s)

ns for all
s in the domain of definition ofMf . Thus, for every well-defined function
F (x) =

∑∞
n=1 f(nx), by considering

h(x) =
⌊1
x

⌋
− F (x) =

∞∑
n=1

1(0,1/n](x)−
∞∑
n=1

f(nx),



98 Daniele Dona, Harald A. Helfgott, Sebastian Zuniga Alterman

we obtain
MF (s) =Mf(s)ζ(s),(2.9)

Mh(s) =
(1
s
−Mf(s)

)
ζ(s),(2.10)

for all s in the domain of definition ofMf such that <(s) > 1.
The following can be readily proved by induction.

Lemma 2.5. For every a ∈ R, j ∈ N ∪ {0} and s ∈ C such that <(s) > 0,
we have

(2.11) M
(
(a− x)j1(0,a](x)

)
(s) = j!as+j

s(s+ 1) . . . (s+ j) .

2.5. The Gamma function. The Gamma function Γ is defined for all
s ∈ C such that <(s) > 0 as Γ : s 7→

∫∞
0 ts−1e−tdt. This function can be ex-

tended meromorphically to C, with poles on the set {0,−1,−2,−3, . . .}
and vanishing nowhere. Where well-defined, it satisfies the relationship
Γ(s + 1) = sΓ(s). This function is closely related to the ζ function, by
means of the functional equation, valid for all s ∈ C\{0, 1},

(2.12) ζ(s) = 2(2π)s−1 sin
(
πs

2

)
Γ(1− s)ζ(1− s).

Theorem 2.6 (Stirling’s formula, explicit form). Let 0 < θ < π. Let s ∈
C\(−∞, 0] such that |arg(s)| ≤ π−θ, where arg(s) is the principal argument
of s. Then

Γ(s) =
√

2πss−
1
2 e−s exp

(
O∗
(
F

|s|

))
,

where F = Fθ = 1
12 sin2( θ2 ) .

Proof. Since Γ(s) has neither zeroes nor poles in the simply connected do-
main C\(−∞, 0], log Γ(s) is a well-defined analytic function on C\(−∞, 0].
By [2, Thm. 1.4.2] with m = 1,

(2.13) log Γ(s) = 1
2 log(2π) +

(
s− 1

2

)
log s− s+ µ(s),

where log is the principal branch of the logarithm defined on C\(−∞, 0]
and µ(s) = 1

12s −
1
2
∫∞

0
B2({x})
(s+x)2 dx. Moreover, as explained in [34, §2.4.4], µ

can be expressed as a Gudermann series so that, for all s ∈ C\(−∞, 0],

(2.14) |µ(s)| ≤ 1
12 cos2(1

2 arg(s)
)
|s|
.

Now, if | arg(s)| ≤ π − θ then cos
(1

2 arg(s)
)

= cos
(1

2 |arg(s)|
)
≥ cos

(
π−θ

2
)

=
sin
(
θ
2
)
. Thus, upon exponentiating both sides of (2.13) and implementing

the final bound for (2.14), we derive the result. �
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Corollary 2.7 (Rapid decay of Γ in non-negative vertical strips). Let T ≥ 1
and σ ≥ 0. Then, for every complex number s = σ + it such that |t| ≥ T ,

|Γ(σ + it)| =
√

2π|t|σ−
1
2 e−

π
2 |t| exp

(
O∗
(
Gσ
T

))
,

where Gσ = σ3

3 + σ2

2

∣∣∣σ − 1
2

∣∣∣+ 1
6 .

Proof. As s is such that | arg(s)| ≤ π
2 , we use Theorem 2.6 with θ = π

2 , and
obtain

<(log Γ(s)) = log(2π)
2 +

(
σ − 1

2

) log(σ2 + t2)
2

− t arg(σ + it)− σ +O∗
( 1

6T

)
.

As log(1+x) ≤ x for all x ≥ 0, we have that log(σ2+t2) = 2 log |t|+O∗
(
σ2

T 2
)
.

Furthermore, observe that arg(σ + it) = arctan
(
t
σ

)
, and that

arctan
(
t

σ

)
=
∫ t

σ

0

dx
1 + x2 = ±π2 −

∫ σ
t

0
(1 +O∗(x2))dx

= ±π2 −
σ

t
+O∗

(
σ3

3t3

)
,

where the sign ± corresponds to the sign of t. Putting everything together,
we obtain that <(log Γ(s)) equals

1
2 log(2π) +

(
σ − 1

2

)
log |t| − π|t|

2 +O∗
((

σ3

3 + σ2

2

∣∣∣∣σ − 1
2

∣∣∣∣
)

1
T 2 + 1

6T

)
.

As 1
T 2 ≤ 1

T , the above error term can thus be compressed to O∗
(Gσ
T

)
. By

exponentiating the above equation, we obtain the result. �

2.6. Bounds on some sums.

Lemma 2.8. For any X ≥ 1 we have

(2.15) logX + γ − c

X
≤
∑
n≤X

1
n
≤ logX + γ + 1

2X ,

where c = 2(log 2 + γ − 1) and γ = 0.5772 . . . is the Euler–Mascheroni
constant.

The constant c in the lower bound was pointed out in [33, Lem. 2.1].

Proof. By applying Theorem 2.2 with K = 2 to the function x 7→ x−1, we
obtain

(2.16)
∑
n≤X

1
n

= logX + 7
12 −

∫ ∞
1

B2({x})
x3 dx+R(X),
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where R(X) = −B1({X})
X − B2({X})

2X2 +
∫∞
X

B2({x})
x3 dx. By (2.1), B1 and B2 are

bounded functions on [0, 1]; hence, R(X) = O
( 1
X

)
and the integral in (2.16)

is convergent. We conclude that γ, defined as limX→∞
∑
n≤X

1
n − logX,

equals 7
12 −

∫∞
1

B2({x})
x3 dx. Therefore,

∑
n≤X

1
n = logX + γ +R(X).

Since B1(t) = t− 1
2 , B2(t) = t2 − t+ 1

6 and max |B2({x})| = 1
6 ,

R(X) = 1
2X −

{X}
X

(
1− 1− {X}

2X

)
− 1

12X2 +O∗
( 1

12X2

)
.

Since 1− (1− {X})/(2X) ≥ 0, the upper bound in (2.15) follows immedi-
ately. We also obtain that R(X) ≥ −1/(2X) − 1/(6X2), and so the lower
bound in (2.15) holds for X ≥ 5; we check it for 1 ≤ X ≤ 5 by hand. �

Lemma 2.9. Let α ∈ R+ \ {1} and X > 0. Then

ζ(α)− 1
(α− 1)Xα−1 −

1
2Xα

≤
∑
n≤X

1
nα
≤ ζ(α)− 1

(α− 1)Xα−1 + 1
Xα

.

Proof. By definition of ζ(s) for <(s) > 1, and by analytic continuation for
<(s) > 0,

(2.17) ζ(s)− 1
(s− 1)Xs−1−

∑
n≤X

1
ns

=
∞∑
n=1

(∫ n

n−1

dx
(X + x)s −

1
(bXc+ n)s

)

for s 6= 1. Set s = α. Since t 7→ t−α is decreasing, the right side of (2.17) is
at least

∞∑
n=1

( 1
(X + n)α −

1
(X + n− 1)α

)
= − 1

Xα
.

By the convexity of t 7→ t−α and (bXc+ n)−α ≥ (X + n)−α,∫ n

n−1

dx
(X+ x)α −

1
(bXc+ n)s ≤

1
2

( 1
(X+ n− 1)α + 1

(X+ n)α
)
− 1

(X+ n)α .

Telescoping again, we see that the right side of (2.17) is at most
1/(2Xα). �

The non-explicit form of the lemma below is classical: see for instance [37,
Thm. 4.11] (from [11, Lem. 2]), though the implied constant there depends
on σ as σ → 0+.

Lemma 2.10. Let s = σ + it. Suppose that X ≥ 1, s 6= 1, 0 < σ ≤ 1 and
|t| ≤ X. Then

ζ(s) =
∑
n≤X

1
ns

+ X1−s

s− 1 +O∗
(
D

Xσ

)
,
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where D = 2/3. If we assume X ≥ C for some integer C > 1, we may use

(2.18) D = 1
2 +

√
1 + 1

C2

 1
12 +

ζ(3)
√

1 + 4
C2

4π3
(
1− 1

2π

√
1 + (1 + 1

C )2
)


+ ζ(C + 2)
π(
√

2π)C+1

√
1 +

(
1 + 1

C

)2
.

In the statement above, we can actually take D = 0.66189.

Proof. We apply Corollary 2.3: then we obtain D ≤ 1
2 +D1 +D2, where

D1 =
K∑
k=2

|ak(s)|max |Bk({X})|
k!Xk−1 , D2 = |aK+1(s)|max |BK({X})|

(σ +K − 1)K!XK−1 .

Our K has to depend on X, since the factor |aK+1(s)| in the numerator
of D2 has absolute value at least XK , and so a factor of X remains once
we divide by the factor of XK−1 in the numerator; K will have to be large
enough for max |BK({X})|/(σ + K − 1)K! to be smaller than a (small)
constant times 1/X.

For X ≥ C ≥ 2, we choose K = bXc + 2 ≥ C + 2. By the bound in
Lemma 2.1 we have

D1 ≤
K∑
k=2

2ζ(k)|ak(s)|
(2π)kXk−1 , D2 ≤

2ζ(K)|s(s+ 1) . . . (s+K − 1)|
(σ +K − 1)(2π)KXK−1 .(2.19)

We have |s + k|/X ≤
√

1 + (k + 1)2/X2 for all k ≥ 0. Then, for 2 ≤ k ≤
K − 1, the ratio of two consecutive addends in the sum above is

(2ζ(k + 1)|ak+1(s)|
(2π)k+1Xk

)(2ζ(k)|ak(s)|
(2π)kXk−1

)−1
= ζ(k + 1)|s+ k − 1|

2πζ(k)X

≤ |s+X|
2πX ≤ 1

2π

√
1 +

(
1 + 1

C

)2
= QC ,

since ζ(k) is decreasing for k > 1. Observe that QC < 1 for all C ≥ 1.
Therefore

(2.20)
D1 ≤

2|s|ζ(2)
(2π)2X

+ 2|s(s+ 1)|ζ(3)
(2π)3X2

∞∑
k=0

QkC

≤
√

1 + 1
C2

(
1
12 + ζ(3)

4π3(1−QC)

√
1 + 4

C2

)
.
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By definition K ≥ 3, so in (2.19) we can bound the terms |s + k| with
k ∈ {K − 2,K − 3} separately. Hence

(2.21)

D2 ≤
ζ(K)
π

|s+K − 1|
σ +K − 1

|s+K − 2|
2πX

|s+K − 3|
2πX

K−4∏
k=0

|s+ k|
2πX

≤ ζ(K)
4π3

√
1+
(

X

bXc+1

)2
√

1+
(
X+1
X

)2√
2

 1
2π

√
1+
(
X− 1
X

)2
K−3

≤ ζ(C + 2)
π(
√

2π)C+1

√
1 +

(
1 + 1

C

)2
,

since the first and last square-roots in the second line are bounded by
√

2.
From (2.20) and (2.21), we obtain (2.18).

Now we aim to obtain the numerical value of D in the statement: (2.18)
is already enough for C ≥ 2 (since it implies that D ≤ 0.62175), and so we
may assume that 1 ≤ X < 2. We apply Corollary 2.3 for two choices of I
such that X ∈ I: for I = [1, 15/14) we use K = 3, and for I = [15/14, 2)
we use K = 4. In either case, we write I0 for the minimum of the interval.
Instead of (2.20) and (2.21), we get

D1 ≤
K∑
k=2

maxX∈I |Bk({X})|
k!

k−2∏
k′=0

√
1 +

(
k′ + 1
I0

)2
,

D2 ≤
maxX |BK({X})|

K! D3,

where

D3 = max
X∈I

√√√√(1 +
(

X

K − 1

)2
)
K−2∏
k′=0

(
1 +

(
k′ + 1
X

)2)
,

as |s+K−1|/(σ+K−1) ≤
√

1 +X2/(σ +K − 1)2 ≤
√

1 +X2/(K − 1)2.
The maximum in D3 is achieved at I0: inside the square root,

(
1+( X

K−1)2) ·(
1 + (K−1

X )2) is maximized for X small since X < K − 1, and the other
factors are decreasing in X. For either choice of I, the numerical result
follows. �

2.7. Further results. The following is an explicit mean value estimate.

Proposition 2.11. For any X,T > 0 and any sequence of complex num-
bers {an}∞n=1,∫ T

0

∣∣∣∣ ∑
n≤X

ann
it

∣∣∣∣2dt =
(
T + E

2

) ∑
n≤X
|an|2 +O∗

(
E
∑
n≤X

n|an|2
)
,
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where E can be chosen to be equal to 2π
√

1 + 2/3
√

6/5 ≤ 8.26495.

Proof. We use the main theorem in [31], which improves on [28, Cor. 2]
(the theorem states C = 4

3 , which yields E = 8
3π, but it is proved with

a lower C that yields our E). We apply it then as in [28, Cor. 3], with a
numerical improvement given by log−1(n+1

n

)
< n + 1

2 , proved directly by
calculus. See also [6, Satz 4.4.3] for an older explicit result that used 15n
instead of 8

3π
(
n+ 1

2
)
. �

If {an}∞n=1 is a real sequence then the error term factor may be improved
to E

2 . As pointed out in [32, Lem. 6.5], a term cancels out, allowing us to
gain a factor of 2 inside the error term.

Lemma 2.12. For any 1 < σ < 2 we have 1
σ−1 < ζ(σ) < 1

σ−1 + ζ(2) − 1.
The lower bound holds also for 0 < σ < 1.

See also [32, Lem. 5.4] for a better upper bound than the above for σ
close to 1.

Proof. The Laurent expansion of ζ is

(2.22) f(σ) = ζ(σ)− 1
σ − 1 =

∞∑
n=0

(−1)nγn
n! (σ − 1)n

where the γn are the Stieltjes constants. For the upper bound, it suffices to
prove that f ′(σ) is positive for σ ∈ (1, 2), so that f(σ) < f(2): one can use

f ′(σ) =
∞∑
n=0

(−1)n+1γn+1
n! (σ − 1)n > −γ1 −

∞∑
n=1

|γn+1|
n! ,

compute the first 10 constants directly and then use the bound |γn| ≤
n!

2n+1 (for n ≥ 1) given by Lavrik in [21, Lem. 4], so that
∑∞
n=10

|γn+1|
n! ≤

1
2
∑∞
n=11

n
2n < 10−2. The lower bound is even simpler to obtain: in order to

prove that f(σ) > 0 for 0 < σ < 2 and σ 6= 1, we compute directly γ0 = γ
and then we bound the absolute value of the rest of the series in (2.22) by
using again Lavrik’s estimations. �

Lemma 2.13. Let A,B ≥ 0. Then, for any ρ > 0,

(A+B)2 ≤ (1 + ρ)A2 +
(

1 + 1
ρ

)
B2,

(A−B)2 ≥ (1− ρ)A2 +
(

1− 1
ρ

)
B2.

Note that the inequalities are tight when ρ = B
A .

Proof. Expand the square. By the arithmetic-geometric mean inequality,
2|AB| = 2(√ρ|A|) · |B|√ρ ≤ ρA

2 + B2

ρ . �
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3. First approach: as in a mean value theorem
We will first bound (Proposition 3.2) the L2 norm of the function t 7→(

(σ + it)−1 −G(σ + it)
)
ζ(σ + it), where G is the Mellin transform of a

function g : [0,∞)→ R. Then we will choose g so that G(σ+ it) is close to
0 for |t| ≥ T , while keeping the aforementioned L2 bound small.

We will first give a general treatment for g arbitrary (Section 3.1). It
will turn out to be easy to choose a g that is optimal within our general
statement (Section 3.2). However, that optimality will turn out to be an
artifact of the form of our general statement. We will be able to do better
(at least for σ ≥ 1/2) by choosing a different g, whose transform G we can
compute explicitly (Section 3.3). Our final estimates are as follows.

Theorem 3.1. Let 0 < σ ≤ 1 and T ≥ T0 = 200. Then the integral

1
2πi

(∫ σ−iT

σ−i∞
+
∫ σ+i∞

σ+iT

) ∣∣∣∣ζ(s)
s

∣∣∣∣2 ds

is bounded by
3ζ(2σ)

5T +
(
c111
σ

+ c112
2σ + 1 + c113

σ + 1 −
c114

2σ − 1

) 1
T 2σ + c12∗

T 2σ+1 , if σ > 1
2 ,

3 log T
5T + c21∗

T
+ c22∗

T 2 , if σ = 1
2 ,(

c311
σ

+ c312
2σ + 1 + c313

σ + 1 + c314
1− 2σ

) 1
T 2σ + c30∗ζ(2σ)

T
+ c32∗
T 2σ+1 , if σ < 1

2 ,

where

c11i = κσκ11i (i = 1, 2, 3, 4), κ = 27.8821, κ12∗ = 0.60031,
c12∗ = κσκ12∗, κ111 = 0.15659, c21∗ = 2.4476,
c31i = c11i (i = 1, 2, 3), κ112 = 0.15655, c22∗ = 1.58493,
c314 = κσκ314, κ113 = 0.00979, κ314 = 0.11361,
c32∗ = c12∗, κ114 = 0.07407, c30∗ = 0.39113.

We have chosen T0 = 200 for simplicity. In actual fact, T0 = 192 is the
least T for which we are able to reach 3

5 as a main term coefficient for
σ = 1

2 .

3.1. Basic estimate. Let us first give a bound valid for a function g that
satisfies a number of general conditions. The proof is in parts close to, and
in fact inspired by, proofs of classical mean value theorems, such as [27,
Thm. 6.1] (see in particular the exposition in [17, Thm. 9.1]).

There are differences all the same. First, in a mean value theorem, we
typically work with a finite sum

∑
n≤X ann

it, and obtain a bound that
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contains a term proportional to X, whereas here we work directly with ζ
and thus with an infinite sum.

Secondly, the proof in [17, Thm. 9.1] (or [27, Thm. 6.1]) majorizes the
characteristic function of a vertical interval by a continuous function of
compact support, and then uses the decay in the inverse Mellin transform
to bound the contribution of off-diagonal terms. On the vertical line, we
choose to work with a function of the form 1−G(s)s, where G is the Mellin
transform of a function g satisfying certain properties. As a consequence,
off-diagonal terms vanish, outside an initial interval [0, δ] that makes a small
contribution.

Proposition 3.2. Let g : [0,∞)→ R be a continuous, piecewise C1 func-
tion such that g and g′ have bounded total variation. Assume that

(a)
∫∞

0 g(t)dt = 1,
(b) 0 ≤ g(t) ≤ 1 for all t,
(c) g(t) = 1 for 0 ≤ t ≤ 1 − δ and g(t) = 0 for t ≥ 1 + δ, where

0 < δ ≤ 1
2 ,

(d) g(1 + t) = 1− g(1− t) for 0 ≤ t ≤ δ.
Let

(3.1) I(σ) = 1
2πi

∫ σ+i∞

σ−i∞

∣∣∣∣1s −G(s)
∣∣∣∣2 |ζ(s)|2ds,

where G is the Mellin transform of g. Then, for any σ > 0,

(3.2) I(σ) ≤ c(σ, α) · δ2σ + 2βδ ·

ζ(2σ)− δ2σ−1

2σ−1 + δ2σ

1−δ2 if σ 6= 1
2 ,

log
(

1
δ

)
+ γ + δ

2(1−δ2) if σ = 1
2 ,

where α = δ
16
∫∞

0 |g′′(t)|dt, β = 1
δ

∫ 1+δ
1 |g(y)|2dy and c(σ, α) = 1

8σ + α
2σ+1 +

α2

2σ+2 .

Proof. Since g is bounded, G(s) is well-defined when <(s) > 0. For <(s) >
1, we know from (2.9) that G(s)ζ(s) is the Mellin transform of the function
x 7→

∑∞
n=1 g(nx) (well-defined by (c)) and from (2.8) that ζ(s)

s is the Mellin
transform of x 7→

∑∞
n=1 1(0,1/n](x).

Let

(3.3) h(x) =
∞∑
n=1

(
1[0,1/n](x)− g(nx)

)
=
⌊1
x

⌋
−
∞∑
n=1

g(nx).

Then

(3.4) Mh(s) =
(1
s
−G(s)

)
ζ(s),

for <(s) > 1. On one hand, by (3.6), h is bounded, and thus Mh(s) is
well-defined for <(s) > 0. On the other hand, by condition (a), G(1) = 1
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and thus the right side of (3.4) is holomorphic for <(s) > 0. Hence, by
analytic continuation, (3.4) holds for <(s) > 0 and therefore, by (2.6),

(3.5) 1
2πi

∫ σ+i∞

σ−i∞

∣∣∣∣1s −G(s)
∣∣∣∣2 |ζ(s)|2ds =

∫ ∞
0
|h(x)|2x2σ−1dx,

for any s ∈ C with <(s) > 0, provided that the integral on the right side
converges. Bounding the integral on the right will suffice to derive the result.

Let us first find an upper bound for the value of |h(x)| to use for small
values of x (namely, x ≤ δ). Using Lemma 2.4 and recalling that g(0) = 1,
g(1) = 0, we obtain that

∞∑
n=1

g(nx) = 1
x

∫ ∞
0

g(t)dt− 1
2 +O∗

( 1
16

∫ ∞
0+
|g′′(tx)|x2dt

)
= 1
x
− 1

2 +O∗
(
x

16

∫ ∞
0+
|g′′(t)|dt

)
.

By putting the above equality inside (3.3), we obtain for any x ≥ 0 that

(3.6) |h(x)| =
∣∣∣∣⌊1
x

⌋
− 1
x

+ 1
2 +O∗

(
x

16

∫ ∞
0+
|g′′(t)|dt

)∣∣∣∣
≤ 1

2 + x

16

∫ ∞
0+
|g′′(t)|dt,

since
∣∣∣btc − t+ 1

2

∣∣∣ ≤ 1
2 for all t ∈ R.

For x > δ, we bound h in another way; by its definition and condition (c)

(3.7)

h(x) =
∑
nx≤1

(1− g(nx))−
∑

1<nx≤1+δ
g(nx)

=
∑

1−δ≤nx≤1
(1− g(nx))−

∑
1<nx≤1+δ

g(nx).

When x > 2δ, there is at most one integer n such that nx ∈ [1− δ, 1 + δ],
since 1+δ

x −
1−δ
x = 2δ

x < 1. For the same reason, when δ < x ≤ 2δ, there can
be at most one integer n (call it n0,x) such that nx ∈ [1− δ, 1] and at most
one integer n (call it n1,x) such that nx ∈ [1, 1 + δ]. Since 0 ≤ g(t) ≤ 1 for
all t, we know that 1−g(nx) ≥ 0 and −g(nx) ≤ 0, and so the last two sums
in (3.7) have opposite sign. Hence |h(x)| ≤ max {|1− g(n0,xx)|, |g(n1,x)|}.



Explicit L2 bounds for the Riemann ζ function 107

It follows that

(3.8)
∫ ∞

0
|h(x)|2x2σ−1dx ≤

∫ δ

0
|h(x)|2x2σ−1dx

+
∑
n≤ 1

δ

∫ 1
n

max{ 1−δ
n
,δ}
|1− g(nx)|2x2σ−1dx

+
∑

n≤ 1+δ
δ

∫ 1+δ
n

max{ 1
n
,δ}
|g(nx)|2x2σ−1dx.

Setting y = nx and changing the order of summation, we get

∑
n≤ 1

δ

∫ 1
n

max{ 1−δ
n
,δ}
|1− g(nx)|2x2σ−1dx =

∫ 1

1−δ

∑
n≤ y

δ

1
n2σ

 |1− g(y)|2y2σ−1dy,

and, similarly,

∑
n≤ 1+δ

δ

∫ 1+δ
n

max{ 1
n
,δ}
|g(nx)|2x2σ−1dx =

∫ 1+δ

1

∑
n≤ y

δ

1
n2σ

 |g(y)|2y2σ−1dy.

Using (3.6) in the first integral on the right hand side of (3.8), we obtain

(3.9)
∫ δ

0
|h(x)|2x2σ−1dx ≤ δ2σ ·

(
1

8σ + α

2σ + 1 + α2

2(σ + 1)

)
,

where α = αg,δ = δ
16
∫∞

0+ |g′′(t)|dt.
As for the remaining terms, we just use the bounds

∑
n≤x

1
n2σ ≤

{
ζ(2σ) + x1−2σ

1−2σ + x−2σ if σ 6= 1
2 ,

log x+ γ + 1
2x if σ = 1

2 ,

which we obtain from Lemmas 2.8 and 2.9, valid for x ≥ 1 (for δ ≤ 1
2 and

y ≥ 1 − δ we certainly have y
δ ≥ 1). Thus, the second and third terms on

the right side of (3.8) add up to at most

(3.10) ζ(2σ)
(∫ 1

1−δ
|1− g(y)|2y2σ−1dy +

∫ 1+δ

1
|g(y)|2y2σ−1dy

)

+ δ2σ−1

1− 2σ

(∫ 1

1−δ
|1− g(y)|2dy +

∫ 1+δ

1
|g(y)|2dy

)

+ δ2σ
(∫ 1

1−δ
|1− g(y)|2 dy

y
+
∫ 1+δ

1
|g(y)|2 dy

y

)
,



108 Daniele Dona, Harald A. Helfgott, Sebastian Zuniga Alterman

if 0 < σ ≤ 1 with σ 6= 1
2 , and

(3.11)
∫ 1

1−δ
|1− g(y)|2 log

(
y

δ

)
dy +

∫ 1+δ

1
|g(y)|2 log

(
y

δ

)
dy

+ γ

(∫ 1

1−δ
|1− g(y)|2dy +

∫ 1+δ

1
|g(y)|2dy

)

+ δ

2

(∫ 1

1−δ
|1− g(y)|2 dy

y
+
∫ 1+δ

1
|g(y)|2 dy

y

)
,

if σ = 1
2 .

When 1
2 ≤ σ ≤ 1, as the functions f(y) = y2σ−1 and f(y) = log

(y
δ

)
are

concave, we have by condition (d) that

(3.12)
∫ 1

1−δ
|1− g(y)|2f(y)dy +

∫ 1+δ

1
|g(y)|2f(y)dy

=
∫ 1+δ

1
|g(y)|2(f(2− y) + f(y))dy ≤ 2f(1)

∫ 1+δ

1
|g(y)|2dy.

In the first line of (3.10), if σ < 1
2 , as ζ(2σ) < 0 and f(y) = y2σ−1 is convex,

we employ the following lower bound

(3.13)
∫ 1

1−δ
|1−g(y)|2f(y)dy+

∫ 1+δ

1
|g(y)|2f(y)dy ≥ 2f(1)

∫ 1+δ

1
|g(y)|2dy.

To estimate the integrals in (3.10), (3.11) that have dy
y in the integrand,

we just use the fact that y 7→ y−1 is convex, so that for all 0 ≤ t ≤ δ,
(1− t)−1 + (1 + t)−1 ≤ (1− δ)−1 + (1 + δ)−1 = 2

1−δ2 .
Consider now β = βg,δ = 1

δ

∫ 1+δ
1 |g(y)|2dy. Putting together (3.9), the

cases (3.10) and (3.11) and the estimates (3.12) and (3.13), we finally obtain
the following upper bounds for

∫∞
0 |h(x)|2x2σ−1dx:

(3.14) 2β
(
δζ(2σ)− δ2σ

2σ − 1 + δ2σ+1

1− δ2

)
+δ2σ

(
1

8σ + α

2σ + 1 + α2

2(σ + 1)

)
,

if 0 < σ ≤ 1 with σ 6= 1
2 , and, if σ = 1

2 ,

�(3.15) 2β
(
δ log

(1
δ

)
+ γδ + δ2

2(1− δ2)

)
+ δ

(
1
4 + α

2 + α2

3

)
.

Note that for 0 < σ < 1
2 the leading term in (3.14) is of order δ2σ, as

then ζ(2σ) < 0. The bound for σ = 1
2 is what results from (3.14) if we let

σ → 1
2
− or σ → 1

2
+.

Remarks. Note that ζ(s)s is the Mellin transform of x 7→ b1/xc. What we are
doing is substract an approximation f(x) to b1/xc such that the difference
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h(x) = b1/xc−f(x) has a well-defined Mellin transform throughout <(s) >
0. Then the Mellin transform acts as an isometry throughout that region,
and so, for <(s) > 0,

(3.16) 1
2πi

∫ σ+i∞

σ−i∞

∣∣∣∣ζ(s)
s
− F (s)

∣∣∣∣2 ds

equals the L2 norm of h(x)xσ−
1
2 on [0,∞).

In the proof of Proposition 3.2, we take f(x) =
∑∞
n=1 g(nx) with g con-

tinuous. Then F (s) = G(s)ζ(s). We need G close to 1
s for |=(s)| ≤ T and

close to 0 for |=(s)| > T , but not too close or else g would have slow decay,
and f would approximate b1/xc poorly. This tension between two sources
of error can be seen as reflecting the uncertainty principle.

Our requirement that g be compactly supported is somewhat restrictive,
but greatly simplifies the proof of Proposition 3.2: for x ≥ 2δ, the sum
f(x) =

∑∞
n=1 g(nx) contains only one term, and so does its square.

3.2. An “optimal” choice of g. What we want is to bound the integral
1

2πi
(∫ σ−iT
σ−i∞+

∫ σ+i∞
σ+iT

)∣∣ ζ(s)
s

∣∣2ds, which is at most

(3.17) I(σ)
inf |=(s)|≥T |1−G(s)s|2

where I(σ) and G(s) are as in Proposition 3.2 and <(s) = σ.
Proposition 3.2 gives us a bound on I(σ), while

(3.18)
inf

|=(s)|≥T
|1−G(s)s| ≥ 1− sup

|=(s)|≥T

|G(s)s(s+ 1)|
T

≥ 1− 1
T

∫ ∞
0
|g′′(x)|xσ+1dx,

where the second inequality comes from applying (2.7) twice. (Proceeding
in this way seems natural, since we already estimated a quantity in terms of
g′′ in Proposition 3.2. It will later turn out later that we are losing enough
in this step to make the result we would obtain in this section worse than
the one we will get in Section 3.3.)

From the conditions on g in Proposition 3.2 we have g′′ = 0 outside
[1 − δ, 1 + δ] and g′′(1 + x) = −g′′(1 − x) for x ∈ [0, δ]. Since x 7→ xσ+1 is
convex in x for σ ≥ 0 and (1 + δ)σ+1 + (1 − δ)σ+1 is increasing in σ ≥ 0,
we see that (1 + x)σ+1 + (1− x)σ+1 ≤ (1 + δ)2 + (1− δ)2 = 2 + 2δ2, and so

(3.19) 1− 1
T

∫ ∞
0
|g′′(x)|xσ+1dx ≥ 1− 1 + δ2

T
|g′′|1.

We focus only on the main terms in the bound of I(σ) given in Proposi-
tion 3.2. Introduce an auxiliary function η : [0,∞) → R defined so that
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g(1 + x) = 1
2η
(
x
δ

)
, g(1 − x) = 1 − 1

2η
(
x
δ

)
. We then have β = 1

4 |η|
2
2,

|g′′|1 = 1
δ |η
′′|1, and so α = 1

16 |η
′′|1. The main terms for δ small are

|η|22ζ(2σ)δ

2
(
1− 1

δT |η′′|1
)2 for 1

2 < σ ≤ 1,
|η|22δ log

(
1
δ

)
2
(
1− 1

δT |η′′|1
)2 for σ = 1

2 ,( |η|22
2(1−2σ) + 1

8σ + |η′′|1
16(2σ+1) + |η′′|21

512(σ+1)

)
δ2σ(

1− 1
δT |η′′|1

)2 for 0 < σ <
1
2 .

The term 1
8σ in the case 0 < σ < 1

2 is not unexpected, as the integral of
Theorem 3.1 diverges at σ = 0. We will choose δ so as to minimize the
main terms above. For 1

2 < σ ≤ 1, the minimum of x
(1−ax−1)2 is at x = 3a.

Therefore we let δ = 3|η′′|1T−1 so that the main term becomes
3ζ(2σ)

2T
(
1− 1

3

)2 |η
′′|1|η|22.

For σ = 1
2 we let δ = 3|η′′|1T−1, out of simplicity. Then log

(1
δ

)
= log T +

log
( 2

3|η′′|1
)
, the term with log T , which will be the main term in T , con-

tributing
3 log T

2T
(
1− 1

3

)2 |η
′′|1|η|22.

For 0 < σ < 1
2 , the minimum of x2σ

(1−ax−1)2 is reached at x =
(
1 + 1

σ

)
a, so

that we can choose δ =
(
1 + 1

σ

)
|η′′|1T−1. The main term in this case is at

most

(3.20)
(
1 + 1

σ

)2σ
T 2σ

(
1− 1

1+ 1
σ

)2

(
|η′′|2σ1 |η|22
2(1−2σ) + |η

′′|2σ1
8σ + |η′′|2σ+1

1
16(2σ+1) + |η′′|2σ+2

1
512(σ+1)

)
.

In all cases, we conclude that we have to select η so that the factor
|η′′|1|η|22 (or, for 0 < σ < 1

2 , the first term in (3.20)) is minimal.

Lemma 3.3. Let η : [0,∞)→ R be a decreasing continuous function, con-
tinuously differentiable outside a finite number of points, such that η(0) = 1
and η(x) = 0 for all x ≥ 1. Then there exist x0 ∈ (0, 1] and a function
ηx0 : [0,∞)→ R of the form

ηx0(x) =
{

1− x
x0

for 0 ≤ x < x0,
0 for x ≥ x0,

such that |η′′x0 |1 ≤ |η
′′|1 and |ηx0 |2 ≤ |η|2.
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Proof. If |η′′|1 = ∞, we just take ηx0 with x0 > 0 sufficiently small so
that |ηx0 |2 ≤ |η|2. Otherwise, suppose that η′ is of bounded variation; then
one-sided limits of η′ always exist.

Since |η′(0+)| < ∞, it is clear that there is a x1 > 0 such that ηx1(t) ≤
η(t) for all t in some interval [0, δ], δ > 0. Since η is decreasing and η(x) = 0,
η is non-negative on [0, 1]. Hence, for x2 = min(x1, 1/δ), we know that
ηx2(x) ≤ η(x) for all x ∈ [0, 1]. Let x0 be the largest element of [0, 1] such
that ηx0(x) ≤ η(x) for all x ∈ [0, 1]; clearly, x0 ≥ x2 > 0. We readily see
that |ηx0 |2 ≤ |η|2, so it is sufficient to prove that |η′′x0 |1 ≤ |η

′′|1.
Clearly, η′x0(0+) ≤ η′(0+). Suppose first that η′x0(0+) = η′(0+). By con-

struction, we have |η′′x0 |1 = 1
x0

= |η′x0(0+)|; furthermore, the total varia-
tion |η′′|1 of η′ is at least |η′(0+) − η′(2)|, which is equal to |η′(0+)|, since
η′(2) = 0. Therefore |η′′x0 |1 = |η′x0(0+)| = |η(0+)| ≤ |η′′|1. Now suppose in-
stead that η′x0(0+) < η′(0+). Let c ∈ (0, x0] such that ηx0(c) = η(c), which
must exist by definition of x0: since η is continuous and ηx0(x) ≤ η(x) for
all x ∈ (0, c), there must be some c′ ∈ (0, c) with η′(c′) ≤ η′x0(c′) = − 1

x0
,

and as before we have |η′′|1 ≥ |η′(c′)−η′(2)| ≥ 1
x0
, concluding the proof. �

Thanks to Lemma 3.3, we can assume that η(x) is simply the function
given by η(x) = 1− x for 0 ≤ x ≤ 1, and by η(x) = 0 for x ≥ 1; the other
functions η0 described in the statement of Lemma 3.3 are just dilations of
this one, and can thus be covered by the fact that we can choose δ as we
wish.

Corollary 3.4 (to Proposition 3.2). Let 0 < σ ≤ 1, T > max
{

3, 1 + 1
σ

}
.

Then

1
2πi

(∫ σ−iT

σ−i∞
+
∫ σ+i∞

σ+iT

)∣∣∣∣ζ(s)
s

∣∣∣∣2ds ≤ ρσ,T ·

ζ(2σ)

2T + c0(3)−c1(3)
T 2σ if σ > 1

2 ,
log T
2T + c0(3)−c2

T if σ = 1
2 ,

c0(1+ 1
σ

)− c1(1+ 1
σ

)
T 2σ + c3

T if σ < 1
2 ,

where

c0(κ) = κ2σ
(
c′ + κ

6T (1− κ2

T 2 )

)
, c1(κ) = κ2σ

6(2σ − 1) ,

c2 = log 3− γ
2 , c3 = (σ + 1)ζ(2σ)

6σ ,

c′ = 1
8σ + 1

16(2σ + 1) + 1
512(σ + 1) , ρσ,T =


9

4
(
1− 9

2T2

)2 if σ ≥ 1
2 ,

(1+σ)2(
1− (1+σ)2

σT2

)2 if σ < 1
2 .
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Notice that c0(κ) and c3 go to ∞ when σ → 0. Observe also that the
numerical optimization in Section 3.3, on which Theorem 3.1 is based, yields
results that are asymptotically stronger than the ones above only for σ ≥ 1

2 :
the main coefficient of Corollary 3.4 turns out to be better when σ > 0 is
close to 0, starting from around σ = 0.044, although not yet reaching the
asymptotically correct value proved later in Theorem 4.6.

Proof. As per the discussion above, we let

g(t) =


1 for 0 < t ≤ 1− δ,
1
2 −

t−1
2δ for 1− δ ≤ t ≤ 1 + δ,

0 for t > 1 + δ.

It is clear that |g′′|1 = 1
δ ; hence, α = 1

16 and β = 1
12 , for α and β as in the

statement of Proposition 3.2. We let δ = 3
T if 1

2 ≤ σ ≤ 1 and δ = 1+σ−1

T if
0 < σ < 1

2 . We bound inf |=(s)|≥T |1−G(s)s| from below by (3.18) and (3.19).
Then apply Proposition 3.2. �

We will not use Corollary 3.4 in our main results.

3.3. A better choice of g for <(s) ∈
[

1
2 , 1

]
. The choice of g in Sec-

tion 3.2 is optimal only once we commit ourselves to bounding |1−G(s)s|
as in (3.18). Alternatively, we can choose g from a class of functions whose
Mellin transforms G(s) we can compute explicitly. We can then optimize g
within that class. Consider, for instance, g : [0,∞)→ R such that g is given
by a polynomial in the interval [1− δ, 1 + δ], where the transition from 1 to
0 occurs. So that the conditions in Proposition 3.2 are fulfilled, we ask for
g with g(x) = 1 for x < 1− δ, g(x) = 0 for x > 1 + δ, and

(3.21) g(x) = 1
2 +

n∑
k=0

ak
(1 + δ − x)k(1− x)(1− δ − x)k

δ2k+1

if 1− δ ≤ x ≤ 1 + δ

for some appropriate parameters n, δ and a sequence {ak}nk=0. This choice in
turn will allow us to give the Mellin transform of such g explicitly, according
to Lemma 2.5.

Lemma 3.5. Let g : [0,∞)→ R be a function of the form (3.21). Suppose
that

(a) a0 = 1
2 and a1 = −1

4 ,
(b) for every 0 ≤ k ≤ n the coefficient ak has sign (−1)k,
(c) for every 0 ≤ k < n we have |ak+1| ≤ 2k+1

2k+2 |ak|.
Then g is continuously differentiable on (0,∞) and 0 ≤ g ≤ 1 everywhere.
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Proof. Each of the three pieces in which g is split by (3.21) is continuously
differentiable, so we just have to check the property for the points 1 − δ
and 1 + δ. We have g(1± δ) = 1

2 ∓ a0 and setting a0 = 1
2 makes it so that

g(1 − δ) = 1, g(1 + δ) = 0, implying the continuity of g. Supposing that
a0 = 1

2 , we also obtain limx→δ− g
′(1± x) = − 1

2δ −
2a1
δ and having a1 = −1

4
makes it so that this limit becomes 0, thus giving us the continuity of the
first derivative for g.

To prove that 0 ≤ g ≤ 1 in the interval [1 − δ, 1 + δ], it is sufficient to
show that g′(x) ≤ 0 in that interval. If we substitute ε = 1− x, we have

g′(x) = − 1
2δ −

n∑
k=1

ak
(ε2 − δ2)k−1

δ2k+1 ((2k + 1)(ε2 − δ2) + 2kδ2)

= −
n−1∑
k=1

(ε2 − δ2)k

δ2k+1 ((2k + 1)ak + (2k + 2)ak+1)− an
(ε2 − δ2)n

δ2n+1 (2n+ 1).

Since we are working in [1 − δ, 1 + δ] we have ε2 − δ2 ≤ 0. To ensure that
the product an(ε2 − δ2)n in the last term is not negative, it is sufficient to
ask for an to have sign (−1)n. We can now proceed backwards by induction
on the terms in the sum. Indeed, supposing that (−1)k+1ak+1 ≥ 0, in order
to have (ε2 − δ2)k((2k + 1)ak + (2k + 2)ak+1) ≥ 0 it is enough to ask that
(−1)kak ≥ 0 and (2k + 1)|ak| ≥ (2k + 2)|ak+1|. �

Computing the parameter β in Proposition 3.2 is routine.

Lemma 3.6. Let g : [0,∞)→ R be a function of the form (3.21) such that
a0 = 1

2 . Define β = 1
δ

∫ 1+δ
1 |g(x)|2dx. Then

β =
4n+2∑
i=0

(−1)i

i+ 1

i∑
l=0

bn,lbn,i−l,

where

bn,j =
n∑
k=0

22k−j
(

2
(

k

j − k − 1

)
+
(

k

j − k

))
ak

for 1 ≤ j ≤ 2n+ 1 and bn,j = 0 for j = 0 or j > 2n+ 1.

Proof. We substitute y = 1 + δ − x inside the definition of g(x). Then, for
1− δ ≤ x ≤ 1 + δ,

g(x) = 1
2 +

n∑
k=0

ak
yk(y − δ)(y − 2δ)k

δ2k+1

= 1
2 +

n∑
k=0

k∑
i=0

(
(−1)k−i

(
k

i

)
ak2k−i

δk+i+1 y
k+i+1 − (−1)k−i

(
k

i

)
ak2k−i

δk+i y
k+i
)
.
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Inside the sums, we substitute j = k+ i+ 1 in the first term and j = k+ i
in the second term, we shift one summation symbol outside, with the new
index j, and we uniformize the range of each of the inner sums. We obtain

g(x) = 1
2 +

2n+1∑
j=0

(−1)j+1 y
j

δj

n∑
k=0

22k−j
(

2
(

k

j − k − 1

)
+
(

k

j − k

))
ak.

For 1 ≤ j ≤ 2n + 1, we just define bn,j to be as in the statement. For
j = 0, we include in the definition of bn,0 the term 1

2 that was outside
the sums, so that bn,0 = 1

2 −
∑n
k=0 22k

(
2
( k
−k−1

)
+
( k
−k
))
ak = 1

2 − a0 = 0.
Therefore

(3.22) g(x) =
2n+1∑
j=0

(−1)j+1bn,j
yj

δj
.

Imposing also bn,j = 0 for j > 2n+ 1, we finally get∫ 1+δ

1
|g(x)|2dx =

4n+2∑
i=0

(
i∑
l=0

(−1)ibn,lbn,i−l

)
δi+1

(i+ 1)δi ,

which gives β. �

In order to choose δ and g optimally, we need to detect first what to
minimize.

Proposition 3.7. If 0 < σ ≤ 1, then 1
2πi
(∫ σ−iT
σ−i∞+

∫ σ+i∞
σ+iT

)∣∣ ζ(s)
s

∣∣2ds is
bounded from above by quantities whose main terms are

(3.23)

2ζ(2σ)r
∑4n+2
i=0

(−1)i
i+1

∑i
l=0 bn,lbn,i−l(

1−
∑2n+1
j=1

2j!|bn,j |
rj

)2 · 1
T

if σ > 1
2 ,

2r
∑4n+2
i=0

(−1)i
i+1

∑i
l=0 bn,lbn,i−l(

1−
∑2n+1
j=1

2j!|bn,j |
rj

)2 · log T
T

if σ = 1
2 ,

r2σ
(

1
8σ + α

2σ+1 + α2

2σ+2 + 2
1−2σ

∑4n+2
i=0

(−1)i
i+1

∑i
l=0 bn,lbn,i−l

)
(
1−

∑2n+1
j=1

2j!|bn,j |
rj

)2 · 1
T 2σ

if σ < 1
2 ,

where g is any polynomial as in (3.21), for any choice of (n, r, {ak}nk=0)
such that 0 < r ≤ T

2 , n ≥ 1, {ak}nk=0 satisfies the conditions of Lemma 3.5,
the bn,j are defined as in Lemma 3.6, α is defined as in Proposition 3.2,
and the expression inside the square in the denominator is positive.
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Proof. Recall inequality (3.17). By Lemma 3.5, all the conditions are met
so that we can derive a bound (depending on δ) for its numerator I(σ) as
given in Proposition 3.2.

Let us concentrate on its denominator. For x ∈ [1 − δ, 1 + δ], we write
g(x) as in (3.22), where y = 1+δ−x. We proceed similarly for z = 1−δ−x.
Observe that, since g(x) = 0 for all x > 1 + δ and g = 1 in [0, 1− δ],

(3.24) g =
2n+1∑
j=0

(−1)j+1bn,j
yj

δj
1[0,1+δ] −

2n+1∑
j=1

bn,j
zj

δj
1[0,1−δ],

where the bn,j are as in Lemma 3.6. Now, g is written as linear combination
of expressions as in (2.11) with a = 1 ± δ, and, by Lemma 2.5, its Mellin
transform is

G(s) =
2n+1∑
j=1

j!bn,j((−1)j+1(1 + δ)s+j − (1− δ)s+j)
δjs(s+ 1) . . . (s+ j) .

Furthermore, we have |s + 1|, . . . , |s + j| > |=(s)|j , and σ + j ≤ j + 1
implies that |(1 + δ)s+j ± (1 − δ)s+j | ≤ (1 + δ)j+1 + (1 − δ)j+1, since the
left hand side is an increasing function of σ. These two facts imply that

(3.25) inf
|=(s)|≥T

|1−G(s)s| ≥ 1−
2n+1∑
j=1

j!|bn,j |
δjT j

b j+1
2 c∑
i=0

2
(
j + 1

2i

)
δ2i.

We want δ to be small, so as to keep the upper bound in (3.2) small,
but not too small, since we want the expression on the right of (3.25) to be
positive.

The terms δjT j in (3.25) tell us that we cannot afford more than taking
δ = r

T , which we choose, for some 0 < r ≤ T
2 large enough (depending

only on n) to make the right hand side of (3.25) positive. Therefore, all
conditions requested in the above paragraph hold. LetDmin be the square of
the expression on the right of (3.25), so that inf |=(s)|≥T |1−G(s)s|2 ≥ Dmin.

Now, the substitution δ = r
T in the bounds (3.2) makes evident that the

obtained main terms, as T →∞, are of order 1
T ,

log T
T , 1

T 2σ for 1
2 < σ ≤ 1,

σ = 1
2 , 0 < σ < 1

2 , respectively. Moreover, thanks to the definitions of α, β,
implemented for a function g of the form (3.21), it is the choice of {ak}nk=0
and of r that will determine the optimal constants in front of these main
terms.

We derive the result once we put everything together and set aside the
summands of order 1

T 2i that come from the inner sum defining
√
Dmin. �

Proof of Theorem 3.1. First we bound 1
2πi

(∫ σ−iT
σ−i∞+

∫ σ+i∞
σ+iT

) ∣∣∣ ζ(s)s ∣∣∣2 ds as in
Proposition 3.7. As aforementioned, it is the choice of n, ak (0 ≤ k ≤ n)
and r that suffices to optimize those main terms in each case. For simplicity,
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we will carry out the optimization process and the corresponding choice of
parameters according to (3.23) only for σ ≥ 1

2 , the same choice being used
for the remaining cases.

For n = 2, 3, we determine by computer all possibilities for coefficients
of g satisfying the conditions in Lemma 3.5 with precision 10−n−1. We
then proceed inductively for larger n; given an optimized g = gn for a
certain n, a better g = gn+1 with n + 1 is found as follows: start with the
set of coefficients provided by the original g, attaching an = 0 as a new
variable, and compute the first bound in (3.23), for any fixed 1

2 < σ ≤ 1
(in fact, σ does not participate in our analysis), by adding ~x to the tuple
~a = (a2, . . . , an) (a0, a1 being fixed) for every ~x ∈ ({0,±10−n−1})n−1 such
the conditions of Lemma 3.5 hold. We thus determine an optimal ~x, call
it ~x∗, and compute the first bound in (3.23) with ~a + j~x∗, j ≥ 1, as long
as we encounter improvements, until we stop and consider the last tuple
~a∗ = ~a + j~x∗, that produces an improvement on (3.23) (meaning that
~a + (j + 1)~x∗ does not). We repeat the described process starting with ~a∗
rather than ~a until we find an optimized set of coefficients a2, . . . , an for
which no increment ~x produces any improvement; this final (a2, . . . , an) will
define gn+1.

By taking n = 6, our parameters are

(3.26)
a0 = 1

2 , a1 = −1
4 , a3 = − 533639

10000000 , a5 = − 1483
2000000 ,

a2 = 3
16 , a4 = 10139

1250000 , a6 = 37
1000000 ,

r = 5.28035 and T ≥ T0 = 200.
Consider Dmin and let

Dmax =

1 +
2n+1∑
j=1

2j!|bn,j |
rj

(
1 +

(
j + 1

2

)
r2

T 2 + · · ·
)2

,

so that, recalling again Proposition 3.7, sup|=(s)|≥T |1−G(s)s|2 ≤ Dmax.
Given the choice in (3.26), we have

α = 0.12496 . . . , β = 5173290592354408399
114081581250000000000 ,

Dmin > 0.79831, Dmax < 1.22439.

Hence, the coefficient of the leading term 1
T in the case of 1

2 < σ ≤ 1
becomes

(3.27) 2βζ(2σ)r
Dmin

, with 2βr
Dmin

< 0.5999 ≤ 3
5 ,
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and the coefficients of the smaller terms 1
T 2σ ,

1
T 2σ+1 are bounded as follows

κ := 27.8821 ∈ r2 + [0, 10−5],

c111 := κσκ111 := κσ · 0.15659 > r2σ

8Dmin
,

c112 := κσκ112 := κσ · 0.15655 > αr2σ

Dmin
,

c113 := κσκ113 := κσ · 0.00979 > α2r2σ

2Dmin
,

c114 := κσκ114 := κσ · 0.07407 < κσ ·
2β
(
1− 10−5

κ

)
Dmax

≤ 2βr2σ

Dmax
,

c12∗ := κσκ12∗ := κσ · 0.60031 > 2βr2σ+1(
1− r2

T 2

)
Dmin

,

where the numbers cijk are the ones given in the statement.
In the case of σ = 1

2 , the coefficient of the leading term log T
T is, as

in (3.27), bounded by 3
5 , while the lower order terms 1

T ,
1
T 2 have their co-

efficients bounded as follows

c21∗ := 2.4476 > r

Dmin

(
2βγ + 1

4 + α

2 + α2

3

)
,

c22∗ := 1.58493 > βr2(
1− r2

T 2

)
Dmin

.

Finally, in the case of 0 < σ < 1
2 , the coefficients are bounded in the same

way as in the case of 1
2 < σ ≤ 1, with the exception of

c314 := κσκ314 := κσ · 0.11361 > 2βr2σ

Dmin
, c30∗ := 0.39113 < 2βr

Dmax
. �

Remarks. The coefficient 3
5 = 0.6 appearing in the case 1

2 ≤ σ ≤ 1 is an
artificial threshold that the authors have set, n = 6 being the smallest
value for which it could be reached for some choice of parameters ak. These
parameters, together with r and T0, were then determined by our choice of
threshold and n through computer calculations, as already described during
the proof.

The chosen threshold could have been improved by choosing a larger n
than n = 6, albeit very slightly; computer investigations up to n = 9 did
not manage to give less than 0.596. Nevertheless, the correct value in that
case, as given in Theorem 1.1 and suggested for example by the asymptotics
in Theorems 7.2 and 7.3 in [37], should have been 1

π = 0.3183 . . . .
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In Section 4 we obtain such a coefficient. However, for small values of T ,
the estimations in Theorem 3.1 coming from our work in this section are
better, whence its importance.

4. Second approach: Euler–Maclaurin and a standard mean
value theorem

Rather than working directly with ζ as in Section 3, we work with its
L2 mean through a finite truncation, as given in Lemma 2.10. We will thus
obtain not only bounds of the integral of t 7→

∣∣ ζ(σ+it)
σ+it

∣∣2 on the tails but also
mean square asymptotic expressions for ζ.

4.1. General bounds. We start by providing bounds for the integral of
|ζ(s)|2 with general extrema. We follow two similar paths, according to
whether in Lemma 2.10 the index X of the sum is chosen to be a constant
(as in Proposition 4.1) or dependent on t (as in Proposition 4.2): the two
choices are advantageous in different situations, as observed in the next
subsections.

Proposition 4.1. Let 1
2 ≤ σ ≤ 1 and T1, T2 be real numbers such that

1 ≤ T1 ≤ T2. Then, for any ρ > 0,
∫ T2
T1
|ζ(σ + it)|2dt is at most

(4.1) (1 + ρ)
((

T2 − T1 + E

2

)
f+

1,1(σ, T2) + Ef+
1,2(σ, T2)

)
+
(

1 + 1
ρ

)(
T 2−2σ

2

( 1
T1
− 1
T2

)
+ D2(T2 − T1)

T 2σ
2

+ 2DT 1−2σ
2 log

(
T2
T1

))
where

f+
1,1(σ, T ) =

{
log T + γ + 1

2T if σ = 1
2 ,

ζ(2σ)− 1
(2σ−1)T 2σ−1 + 1

T 2σ if 1
2 < σ ≤ 1,

f+
1,2(σ, T ) =

{
T 2−2σ

2(1−σ) + 1
2 if 1

2 ≤ σ < 1,
log T + γ + 1

2T if σ = 1,
and the constants D and E are as in Lemma 2.10, with C = bT2c, and as
in Proposition 2.11, respectively. Moreover, for any −1 < ρ < 0,

∫ T2
T1
|ζ(σ+

it)|2dt is bounded from below by the expression in (4.1) where f+
1,1, f

+
1,2 are

replaced respectively by

f−1,1(σ, T ) =
{

log T + γ − c
T if σ = 1

2 ,
ζ(2σ)− 1

(2σ−1)T 2σ−1 − 1
2T 2σ if 1

2 < σ ≤ 1,

f−1,2(σ, T ) =
{
T 2−2σ

2(1−σ) + ζ(2σ − 1)− 1
2T 2σ−1 if 1

2 ≤ σ < 1,
log T + γ − c

T if σ = 1,
where c is as in Lemma 2.8.
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Proof. Let 1 ≤ T1 ≤ T2. By Lemma 2.10, for any X ≥ T2 we have

(4.2)

∫ T2

T1
|ζ(σ + it)|2dt ≤

∫ T2

T1
(|Z(t)|+ |R(t)|)2dt,

Z(t) =
∑
n≤X

1
ns
, R(t) =

∣∣∣∣∣X1−s

s− 1

∣∣∣∣∣+ D

Xσ
,

where s = σ+ it. We also obtain a lower bound for the expression above by
writing |Z(t)| − |R(t)| ≤ |ζ(σ + it)|. Hence, by Lemma 2.13, for any ρ > 0,∫ T2

T1
(|Z(t)|+ |R(t)|)2dt ≤ (1 + ρ)

∫ T2

T1
|Z(t)|2dt+

(
1 + 1

ρ

)∫ T2

T1
|R(t)|2dt,

and for any −1 < ρ < 0,∫ T2

T1
(|Z(t)| − |R(t)|)2dt ≥ (1 + ρ)

∫ T2

T1
|Z(t)|2dt+

(
1 + 1

ρ

)∫ T2

T1
|R(t)|2dt.

Applying Proposition 2.11 with T = T2 − T1 and an = 1
nσ+iT1 , we see that

(4.3)
∫ T2

T1
|Z(t)|2dt =

(
T2 − T1 + E

2

) ∑
n≤X
|an|2 +O∗

E ∑
n≤X

n|an|2
 ,

If σ = 1
2 , we use Lemma 2.8 for the first term and

∑
n≤X 1 = bXc ≤ X

for the second. If 1
2 < σ < 1 we use Lemma 2.9 for both terms and the

inequality ζ(2σ−1) + 1
X2σ−1 < ζ(0) + 1 = 1

2 . If σ = 1 we use Lemma 2.9 for
the first and Lemma 2.8 for the second. This analysis gives the following
upper bounds for

∫ T2
T1
|Z(t)|2:(

T2 − T1 + E

2

)(
logX + γ + 1

2X

)
+ EX

if σ = 1
2 ,(
T2 − T1 + E

2

)(
ζ(2σ)− 1

(2σ − 1)X2σ−1 + 1
X2σ

)
+ EX2−2σ

2(1− σ) + E

2

if 1
2 < σ < 1, and(

T2 − T1 + E

2

)(
ζ(2)− 1

X
+ 1
X2

)
+ E

(
logX + γ + 1

2X

)
if σ = 1. Analogous lower bounds can be deduced respectively, using the
same lemmas.

As for the second term in (4.2),

(4.4)
∫ T2

T1
|R(t)|2dt =

∫ T2

T1

∣∣∣∣∣X1−s

s− 1

∣∣∣∣∣
2

+ D2

X2σ + 2D
Xσ

∣∣∣∣∣X1−s

s− 1

∣∣∣∣∣ dt.
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Thanks to our condition ρ > −1 for the lower bound, and as we want non-
trivial lower bounds, with R(t) being smaller in magnitude than Z(t), it
suffices to have only an upper bound for (4.4). Hence, in order to bound
the expression on the above right side, we observe that∫ T2

T1

∣∣∣∣∣X1−s

s− 1

∣∣∣∣∣
2

dt ≤ X2−2σ
∫ T2

T1

dt
t2

= X2−2σ
( 1
T1
− 1
T2

)
.

For the second term we simply have
∫ T2
T1
D2X−2σdt = (T2 − T1)D2X−2σ,

while the third one is bounded as∫ T2

T1

2D
Xσ

∣∣∣∣∣X1−s

s− 1

∣∣∣∣∣ dt ≤ 2DX1−2σ
∫ T2

T1

dt
t

= 2DX1−2σ log
(
T2
T1

)
.

We obtain then∫ T2

T1
|R(t)|2dt ≤ X2−2σ

( 1
T1
− 1
T2

)
+ D2(T2 − T1)

X2σ + 2DX1−2σ log
(
T2
T1

)
.

Putting everything together, and imposing X = T2 in order to minimize
the various terms that arise (X < T2 is not possible, by the conditions in
Lemma 2.10), we obtain the result in the statement. �

Proposition 4.2. Let 1
2 ≤ σ ≤ 1 and T1, T2 be real numbers such that

1 ≤ T1 ≤ T2. Then, for any ρ > 0,
∫ T2
T1
|ζ(σ + it)|2dt is at most

(4.5) (1 + ρ)
(
f+

2,1(σ, T1, T2) + f+
2,2(σ, T2)

)
+
(

1 + 1
ρ

)
f+

2,3(σ, T1, T2),

where

f+
2,1(σ, T1, T2)=

{
T2 log T2−T1 log T1−(1−γ)(T2−T1)+ 1

2 log T2
T1

if σ = 1
2 ,

ζ(2σ)(T2 − T1) if σ > 1
2 ,

f+
2,2(σ, T2)=



2T2 log T2+
(
2γ+E

2 +16
)
T2+

(
E
4 −1

)
log T2

+1+
(
E
4 −1

)
γ+

(
E
4 −1

)
1

2T2
if σ = 1

2 ,

2T 2−2σ
2 log T2

1−σ +
(
E
2 +2γ+ 4

1−σ

)
T 2−2σ

2
1−σ +

(
E
4 −1

)
ζ(2σ)

+
(

1
1−σ−

E
4 −1

2σ−1

)
1

T 2σ−1
2

+
(
E
4 −1

)
1

2T 2σ
2

if 1
2 < σ < 1,

3 log2 T2+
(
6γ+E

2

)
log T2+3γ2+E

2 γ

+
(
E
4 −1

)
ζ(2)+ 3 log T2

T2
+ 3γ+E

4
T2

+ 3
4T 2

2
if σ = 1,
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f+
2,3(σ, T1, T2) =

(1 +D)2 log
(
T2
T1

)
if σ = 1

2 ,
(1+D)2

2σ−1 if 1
2 < σ ≤ 1,

and the constants D and E are as in Lemma 2.10 with C = bT2c and
as in Proposition 2.11, respectively. Moreover, for any −1 < ρ < 0,∫ T2
T1
|ζ(σ + it)|2dt is bounded from below by the expression in (4.5) where

f+
2,1, f

+
2,2, f

+
2,3 are replaced respectively by

f−2,1(σ, T1, T2) =


T2 log T2−T1 log T1−(1−γ)(T2−T1)−c log T2

T1
if σ = 1

2 ,

ζ(2σ)(T2−T1)− T 2−2σ
2 −T 2−2σ

1
2(1−σ)(2σ−1)−

T 1−2σ
2 −T 1−2σ

1
2(2σ−1) if σ > 1

2 ,

f−2,2(σ, T2) = −f+
2,2(σ, T2), f−2,3(σ, T1, T2)=f+

2,3(σ, T1, T2),

where c is as in Lemma 2.8.

Proof. We start with the bound in Lemma 2.10. For s = σ+ it and X = t,
by the triangle inequality we get

(4.6)
∫ T2

T1
|ζ(σ + it)|2dt =

∫ T2

T1

∣∣∣∣∣∣
∑
n≤t

1
nσ+it

∣∣∣∣∣∣
2

dt

+O∗

2
∫ T2

T1

∣∣∣∣∣∣
∑
n≤t

1
nσ+it

∣∣∣∣∣∣
∣∣∣∣∣ t1−ss− 1

∣∣∣∣∣ dt + 2D
∫ T2

T1

∣∣∣∣∣∣
∑
n≤t

1
nσ+it

∣∣∣∣∣∣ t−σdt

+
∫ T2

T1

∣∣∣∣∣ t1−ss− 1

∣∣∣∣∣
2

dt+ 2D
∫ T2

T1

∣∣∣∣∣ t1−ss− 1

∣∣∣∣∣ t−σdt+D2
∫ T2

T1
t−2σdt

)
.

The second and third term in (4.6) can be treated using the Cauchy–
Schwarz inequality and reduced to the other integrals in the expression.
Observe that the integrands

∣∣∣ t1−ss−1

∣∣∣ t−σ, ∣∣∣ t1−ss−1

∣∣∣2 are both bounded from above
by t−2σ, so that all of their integrals are bounded by 1

2σ−1 if 1
2 < σ ≤ 1 and

by log
(T2
T1

)
if σ = 1

2 . Using then Lemma 2.13 we get

(4.7)
∫ T2

T1
|ζ(σ + it)|2dt

≤ (1 + ρ)
∫ T2

T1

∣∣∣∣∣∣
∑
n≤t

1
nσ+it

∣∣∣∣∣∣
2

dt+
(

1 + 1
ρ

)
f+

2,3(σ, T1, T2),

and an analogous lower bound for −1 < ρ < 0.
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We want now to estimate the first term in (4.7), namely we want bounds
for the integral

∫ T2
T1

∣∣∑
n≤t ane

iλnt
∣∣2dt, where in our case an = 1

nσ ∈ R+ and
λn = − logn. First, note that

∫ T2

T1

∣∣∣∣∣∣
∑
n≤t

ane
iλnt

∣∣∣∣∣∣
2

dt =
∫ T2

T1

∑
n≤t

a2
ndt+

∫ T2

T1

∑
l,r≤t
l 6=r

alare
i(λl−λr)tdt.(4.8)

If 1
2 < σ ≤ 1, the first integral in (4.8) is bounded by Lemma 2.9 as

∫ T2

T1

(
ζ(2σ)− t1−2σ

2σ − 1 −
1

2t2σ

)
dt

≤
∫ T2

T1

∑
n≤t

a2
ndt ≤

∫ T2

T1

(
ζ(2σ)− t1−2σ

2σ − 1 + 1
t2σ

)
dt,

so that

ζ(2σ)(T2 − T1)− T 2−2σ
2 − T 2−2σ

1
2(1− σ)(2σ − 1) −

T 1−2σ
2 − T 1−2σ

1
2(2σ − 1)

≤
∫ T2

T1

∑
n≤t

a2
ndt ≤ ζ(2σ)(T2 − T1),

where we use that − t1−2σ

2σ−1 + t−2σ ≤ 0 (under the conditions for σ, t), and
we can extract an analogous lower bound.

If σ = 1
2 , the first integral is bounded from above as

(4.9)
∫ T2

T1

∑
n≤t

a2
ndt ≤

∫ T2

T1

(
log t+ γ + 1

2t

)
dt

= T2 log T2 − T1 log T1 − (1− γ)(T2 − T1) + 1
2(log T2 − log T1),

by Lemma 2.8, from which we can derive an analogous lower bound.
As for the second integral in (4.8), consider first T1, T2 to be integers for

simplicity: we make use of the fact that a sum for l, r ≤ t is the same as a
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sum for l, r ≤ btc and get

(4.10)
∫ T2

T1

∑
l,r≤t
l 6=r

alare
i(λl−λr)tdt

=
T2−1∑
j=T1

∑
l,r≤j
l 6=r

alar
ei(λl−λr)(j+1) − ei(λl−λr)j

i(λl − λr)

=
∑

l,r≤T2−1
l 6=r

T2−1∑
j=max{T1,l,r}

alar
ei(λl−λr)(j+1) − ei(λl−λr)j

i(λl − λr)

=
∑

l,r≤T2−1
l 6=r

alar
λl − λr

ei(λl−λr)T2 − ei(λl−λr) max{T1,l,r}

i
.

For T1, T2 general, we have to consider two additional integrals
∫ dT1e
T1

,
∫ T2
bT2c;

we obtain however the same bound as in (4.10), with the summation going
up to bT2c and with T1 replaced by bT1c.

We can divide the last sum in (4.10) into two sums, one for each of the
summands in the numerator of the second fraction. For the first sum we
can reason as in Proposition 2.11, using [31] and obtaining

(4.11)

∣∣∣∣∣∣∣∣
∑

l,r≤T2−1
l 6=r

alare
i(λl−λr)T2

i(λl − λr)

∣∣∣∣∣∣∣∣ ≤
E

2
∑

n≤bT2c

a2
n

minn′ 6=n |λn − λn′ |
.

As for the second sum, we can bound the summand in absolute value
by alar

|λl−λr| ; then we use classical arguments (see [19, (3.5)–(3.6)]), and∑
l,r≤bT2c
l 6=r

alar
|λl−λr| is at most

(4.12)
∑
l,r≤T2
l 6=r

alar
|λl − λr|

≤

∑
r≤T2

1
rσ

2

−
∑
r≤T2

1
r2σ+2

∑
r≤T2

1
r2σ−1

∑
r≤T2

1
r

.
Upon putting (4.11) and (4.12) together, we resort to Lemmas 2.8 and 2.9
along with the simplifications ζ(α) + 1

Tα2
< 1

2Tα2
,
∑
r≤T2

1
rα ≤

2T 1−α
2

1−α for
0 < α < 1 and T2 ≥ 1, and the bound

∑
r≤T2

1
r2 ≤ ζ(2). Subsequently, we

obtain f±2,2(σ, T2) as in the statement. �
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4.2. Mean value estimates of ζ(s) for <(s) ∈
[

1
2 , 1

]
.

Theorem 4.3. Let T ≥ T0 = 4. Then∫ T

1

∣∣∣∣ζ (1
2 + it

)∣∣∣∣2 dt ≤ T log T + 2.0 · T
√

log T + 23.05779 · T∫ T

1

∣∣∣∣ζ (1
2 + it

)∣∣∣∣2 dt ≥ T log T − 2.0 · T
√

log T − 0.93213 · T.

Moreover, for 1
2 < σ < 1,∫ T

1
|ζ(σ + it)|2dt ≤ ζ(2σ)T + C+(σ) ·max{T 2−2σ log T,

√
T}∫ T

1
|ζ(σ + it)|2dt ≥ ζ(2σ)T − C−(σ) ·max{T 2−2σ log T,

√
T}

with

C+(σ) = 7.20238
(1− σ)2 + 14.96202

1− σ + 5.45623
2σ − 1 + 0.08136

C−(σ) = 4.0
(1− σ)2 + 0.70015

(1− σ)(2σ − 1) + 8.3095
1− σ + 4.12046

2σ − 1 + 0.69962.

Finally, ∫ T

1
|ζ(1 + it)|2dt ≤ π2

6 T + π

√
2
3
√
T + 22.45519 · log T∫ T

1
|ζ(1 + it)|2dt ≥ π2

6 T − π
√

2
3
√
T + 0.39474 · log T.

Proof. We substitute T1 = 1 inside either Proposition 4.1 or Proposi-
tion 4.2, according to which one gives us the best result. Our choice of
ρ for the upper bound will be the square root of the ratio between the lead-
ing terms of the expressions multiplying 1 + 1

ρ and 1 + ρ respectively, the
same choice with a negative sign corresponding to the lower bound. Such
choice will be very close to the optimal one highlighted by Lemma 2.13,
but simpler and easier to handle.

For 1
2 < σ < 1, Proposition 4.2 is the better alternative, as ρ will be

qualitatively smaller than in Proposition 4.1 and the second order term
will be of smaller order (the error term arising in the alternative case being
of order T

3
2−σ). We set ρ = 1+D√

(2σ−1)ζ(2σ)T
(where D is as in the proof of

Lemma 2.10, choosing C = bT0c) and by imposing T ≥ T0 we merge all
lower order terms, observing that the bound on ζ(2σ) given in Lemma 2.12
is being used; the condition T0 = 4 is employed to make sure that we
actually get −ρ > −1, in order to apply Proposition 4.2 in the lower bound
correctly.
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When σ ∈
{1

2 , 1
}
the better alternative is Proposition 4.1: in the first

case, the main terms obtained through Propositions 4.1 and 4.2 are quali-
tatively the same but worse constants arise from Proposition 4.2, while in
the second case the same situation occurs for the error terms. For σ = 1

2 we
set ρ = 1√

log T and for σ = 1 we set ρ = 1√
ζ(2)T

, and then impose T ≥ T0

to simplify the second order terms. �

4.3. Extension of asymptotic formulas. We prove here a proposition
that allows us to extend the asymptotic formulas in the previous subsection
to the case σ < 1

2 , via the functional equation (2.12).

Proposition 4.4. Let I = [a0, a1] be an interval of the real line (ai = ±∞
is allowed). Let Z : I→ R≥0 be an integrable function such that, for every
T1, T2 ∈ I with T1 ≤ T2,

F (T1, T2)− r−(T1, T2) ≤
∫ T2

T1
Z(t)dt ≤ F (T1, T2) + r+(T1, T2),(4.13)

where F , r+ and r− are non-negative real functions, such that F is differ-
entiable and, for every pair T1, T2 ∈ I, F (T2, T2) = F (T1, T1) = 0.

Let f : I→ R≥0 be a differentiable function with f ′ integrable satisfying
either f ′ ≥ 0 or f ′ ≤ 0 and such that either f(a0) = 0 or f(a1) = 0. We
have the following cases.

(i) If f(a0) = 0 (so f ′ ≥ 0) and
∫ T2
T1

∫ T2
a0
|f ′(u)|Z(t)dudt converges for

every T1, T2 ∈ I with T1 ≤ T2, then∫ T2

T1
f(t)Z(t)dt ≤

∫ T2

a0

(
−f(u)∂F (u, T2)

∂u
+ f ′(u)r+(u, T2)

)
du,∫ T2

T1
f(t)Z(t)dt ≥

∫ T2

a0

(
−f(u)∂F (u, T2)

∂u
− f ′(u)r−(u, T2)

)
du.

(ii) If f(a1) = 0 (so f ′ ≤ 0) and
∫ T2
T1

∫ a1
T1
|f ′(u)|Z(t)dudt converges for

every T1, T2 ∈ I with T1 ≤ T2 and limu→a1 f(u)F (T1, u) = 0, then∫ T2

T1
f(t)Z(t)dt ≤

∫ a1

T1

(
f(u)∂F (T1, u)

∂u
− f ′(u)r+(T1, u)

)
du,∫ T2

T1
f(t)Z(t)dt ≥

∫ a1

T1

(
f(u)∂F (T1, u)

∂u
+ f ′(u)r−(T1, u)

)
du.

Proof. As f ′ is integrable, so is |f |. Suppose first that f(a0) = 0; by the
Fundamental Theorem of Calculus, for every t ∈ [T1, T2], f(t) =

∫ t
a0
f ′(u)du.

Then∫ T2

T1
f(t)Z(t)dt =

∫ T2

T1

∫ t

a0
f ′(u)Z(t)dudt =

∫ T2

T1

∫ T2

T1
1[a0,t](u)f ′(u)Z(t)dudt.
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Observe that, under the above conditions, 1[a0,t](u) = 1[u,T2](t)1[a0,T2](u).
Since the double integral

∫ T2
T1

∫ T2
a0
|f ′(x)|Z(t)dxdt converges, by Fubini’s

Theorem, we can exchange the order of integration in the above equation
and obtain∫ T2

T1
f(t)Z(t)dt =

∫ T2

a0
f ′(u)

∫ T2

u
Z(t)dtdu ≤

∫ T2

a0
f ′(u)(F (u, T2)+r+(u, T2))du

= −
∫ T2

a0
f(u)∂F (u, T2)

∂u
du+

∫ T2

a0
f ′(u)r+(u, T2)du,

where we have used integration by parts in the last step. We also derive
the lower bound

−
∫ T2

a0
f(u)∂F (u, T2)

∂u
du−

∫ T2

a0
f ′(u)r−(u, T2)du.

Case (ii) is obtained by proceeding in a similar manner as above, keep-
ing in mind that f(t) = −

∫ a1
t f ′(u)du for t ∈ [T1, T2] and 1[t,a1](u) =

1[T1,u](t)1[T1,a1](u), and then using Fubini’s Theorem and integration by
parts. Here, the condition limu→a1 f(u)F (T1, u) = 0 is employed so as to
make sure that if a1 =∞, integration by parts is well-performed. �

The sign condition on f ′ in Proposition 4.4 is not necessary; under the
other conditions, one can derive an analogous result by writing f ′ = f ′+−f ′−,
where f± = max{±f ′, 0}. In that case, the point a ∈ I such that f(a) = 0
need not be an extremum of I, and if T1 < a < T2 one can derive bounds
by applying case (i) to

∫ T2
a f(t)Z(t)dt and case (ii) to

∫ a
T1
f(t)Z(t)dt.

4.4. Mean value estimates of ζ(s) for <(s) ∈
[
0, 1

2

)
. Thanks to

Proposition 4.4, we are going to give asymptotic formulas for the integral
of |ζ(σ + it)|2 in the case 0 ≤ σ < 1

2 .

Theorem 4.5. If 0 < σ < 1
2 and T ≥ T0 = 4, then∫ T

1
|ζ(σ + it)|2dt ≤ ζ(2− 2σ)

(2π)1−2σ(2− 2σ)T
2−2σ + L+(σ)T,∫ T

1
|ζ(σ + it)|2dt ≥ ζ(2− 2σ)

(2π)1−2σ(2− 2σ)T
2−2σ − L−(σ)T,

where

L+(σ) = 1
(2π)1−2σ

(27.86621
σ2 + 74.41842

σ
+ 42.18032

1− 2σ + 35.54594
)
,

L−(σ) = 1
(2π)1−2σ

(27.86621
σ2 + 66.15347

σ
+ 40.4816

1− 2σ + 15.45198
)
.
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If σ = 0 and T ≥ T0 = 4, then∫ T

1
|ζ(it)|2dt ≤ π

24T
2 + 4.02061 · T log T + 7.41137 · T,∫ T

1
|ζ(it)|2dt ≥ π

24T
2 − 0.0936 · T log T − 7.41137 · T.

Proof. Consider σ such that 0 ≤ σ < 1
2 . By using the functional equa-

tion (2.12) of ζ and knowing that |ζ(s)| = |ζ(s)|, |Γ(s)| = |Γ(s)|, we readily
see that

(4.14)
∫ T

1
|ζ(σ + it)|2dt

= 1
(2π)2−2σ

∫ T

1

∣∣∣∣2 sin
(
πs

2

)
Γ(1− σ + it)ζ(1− σ + it)

∣∣∣∣2 dt

Let s = σ+ it with t ≥ 1. For every complex number z we have the identity
|sin(z)|2 = cosh2(=(z))−cos2(<(z)) (combine 4.5.7 and 4.5.54 in [1]). Hence

(4.15)

∣∣∣∣sin(πs2
)∣∣∣∣2 = eπt

4

(
1 + 1

eπt

(
2 + 1

eπt
− 4 cos2

(
πσ

2

)))
= eπt

4

(
1 +O∗

( 2
eπt

))
,

since 1
2 < cos2 (πσ

2
)
≤ 1 for the choice of σ. Moreover, using Corollary 2.7,

|Γ(1 − σ + it)| =
√

2πt
1
2−σe−

πt
2 exp

(
O∗
(G1−σ

t

))
, where G1−σ = (1−σ)3

3 +
(1−σ)2

2
(1

2 − σ
)

+ 1
6 ≤

1
3 + 1

4 + 1
6 = 3

4 . We then verify that exp
(
O∗
(G1−σ

t

))
=

1 +O∗
(K1
t

)
, where K1 = e

3
4 − 1, as t(e

3
4t − 1) is decreasing for t ≥ 1. This

observation and (4.15) allow us to derive in (4.14) that∫ T

1
|ζ(σ + it)|2dt = 1

(2π)1−2σ

∫ T

1
t1−2σ |ζ(1− σ + it)|2

(
1 +O∗

(
K2
t

))
dt,

where K2 is defined as below(
1 + 2

eπt

)(
1 + K1

t

)2
≤ 1 +

(
2K1 +K2

1 + 2
eπ

+ 4K1
eπ

+ 2K2
1

eπ

)
1
t

= 1 + K2
t
,

since eπt

t is increasing for t ≥ 1; we could do better, since the worst cases
of (4.15) and G1−σ happen at different σ, but the advantage would be
negligible. We conclude that

(4.16)
∫ T

1
|ζ(σ + it)|2dt = 1

(2π)1−2σ

∫ T

1
t1−2σ |ζ(1− σ + it)|2 dt

+O∗
(

K2
(2π)1−2σ

∫ T

1

|ζ(1− σ + it)|2

t2σ
dt
)
.
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To estimate (4.16), we could resort to Proposition 4.4, using the functions
t 7→ t1−2σ, t 7→ t−2σ and the bounds for

∫ T
1 |ζ(1 − σ + it)|2dt given in

Theorem 4.3. This approach, while simpler, produces less accurate second
order terms. One can do better by studying

∫ T
u |ζ(1−σ+it)|2dt for 1 ≤ u ≤

T . We proceed as in Theorem 4.3, with the general bound of Proposition 4.1.
Set ρ = Tσ−1/2√

ζ(2−2σ)u
: the dependence on u allows us to use Proposition 4.4

non-trivially, yielding sharper estimates, while ρ in Proposition 4.2 depends
solely on T . Afterwards, we merge the second order terms according to
either u ≥ 1 or u ≤ T , recalling Lemma 2.12 and T ≥ T0. The final bounds
are

(4.17) − r−(u, T ) ≤
∫ T

u
|ζ(1− σ + it)|2dt− ζ(2− 2σ)(T − u) ≤ r+(u, T ),

where

(4.18) r±(u, T )

=

2
√
ζ(2− 2σ)

(
T

1
2 +σ
√
u

+ D
√
u

T
1
2−σ

log
(
T
u

))
+N±(σ)T 2σ if σ > 0,

π
√

2T
3u +W± log T if σ = 0,

and

N+(σ) = 8.26495
σ

+ 4.69872
1− 2σ + 13.23452, W+ = 25.26219,

N−(σ) = 4.13248
σ

+ 3.34936
1− 2σ + 2.86508, W− = 0.58811.

As remarked, the terms in u in the definition of r±(u, T ) are those that
would have otherwise given larger error terms if we had taken r± indepen-
dent of u.

We further verify by (4.17) that the conditions of Proposition 4.4 are
met with the increasing function f(t) = t1−2σ − 1, Z(t) = |ζ(1 − σ + it)|2
and a0 = 1 (we cannot use f(t) = t1−2σ directly as (4.17) is only valid for
u ≥ 1). We split the integral as

∫ T

1
t1−2σ|ζ(1− σ + it)|2dt

=
∫ T

1
(t1−2σ − 1)|ζ(1− σ + it)|2dt+

∫ T

1
|ζ(1− σ + it)|2dt,
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and the second integral is already bounded by (4.17). For the first, we thus
apply Proposition 4.4(i) using the bound in (4.17) as∫ T

1
(t1−2σ − 1)|ζ(1− σ + it)|2dt

≤
∫ T

0
u1−2σζ(2− 2σ)

+ (1− 2σ)
(

2
√
ζ(2− 2σ)T

1
2 +σu−σ−

1
2 +N+(σ)T 2σu−2σ

)
du

+
∫ T

1
2
√
ζ(2− 2σ)DT

1
2−σu

1
2 log

(
T

u

)
− ζ(2− 2σ)du

= ζ(2− 2σ)
2− 2σ T 2−2σ + 4

√
ζ(2− 2σ)T +N+(σ)T

+ (1− 2σ)2
√
ζ(2− 2σ)DT

1−σ − T σ−
1
2(

3
2 − 2σ

)2 − ζ(2− 2σ)(T − 1).

We proceed similarly for the lower bound (a term − ζ(2−2σ)
2−2σ emerges in

that case from the approximations) and for σ = 0. Using also Lemma 2.12
and 1−2σ

( 3
2−2σ)2 ≤ 1

2 , we obtain

∫ T

1
t1−2σ|ζ(1− σ + it)|2dt ≤ ζ(2− 2σ)

2− 2σ T 2−2σ + S+(σ, T ),∫ T

1
t1−2σ|ζ(1− σ + it)|2dt ≥ ζ(2− 2σ)

2− 2σ T 2−2σ − S−(σ, T )

where

S+(σ, T ) =


(

16.5299
σ + 17.20098

1−2σ + 32.73591
)
T if 0 < σ < 1

2 ,

W+T log T + 2π
√

2
3T if σ = 0,

S−(σ, T ) =


(

8.26495
σ + 15.50227

1−2σ + 12.64195
)
T if 0 < σ < 1

2 ,

W−T log T + 2π
√

2
3T if σ = 0.

Finally, for the error term of (4.16), the conditions of Proposition 4.4
are not met with f(t) = t−2σ and 0 < σ < 1

2 . Instead, we apply the
weaker bound t−2σ < 1, sufficient to have an error term of order T , and use
Theorem 4.3 with 1− σ instead of σ. �

4.5. Square mean of ζ(s)
s

on tails: asymptotically sharp bounds.
We will use the bounds for ζ(s) given in the previous sections and the
machinery of Proposition 4.4 to retrieve upper bounds for ζ(s)

s .
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Theorem 4.6. Let T ≥ T0 = 4; let L+, N+ be as in Theorem 4.5, and let
D be defined as in Lemma 2.10 with C = bT0c. Then

∫∞
T
|ζ(s)|2
|s|2 dt is bounded

from above by
ζ(2− 2σ)

2σ(2π)1−2σ ·
1
T 2σ + 2L+(σ) · 1

T
if 0 < σ <

1
2 ,

log T
T

+ 4.0 ·
√

log T
T

+ 49.81422 · 1
T

if σ = 1
2 ,

ζ(2σ) · 1
T

+
(

2N+(1− σ) + (D + 4)
√
ζ(2σ)

)
· 1
T 2σ if 1

2 < σ < 1,

π2

6 ·
1
T

+ 25.26219 · log T
T 2 + 16.05123 · 1

T 2 if σ = 1.

Proof. We apply case (ii) of Proposition 4.4 by taking T1 = T ≥ 1, T2 =∞,
f(t) = 1

σ2+t2 , and a1 = ∞. Using the bounds u2 < σ2 + u2 and (−(σ2 +
u2)−1)′ < 2u−3, we get∫ ∞

T

|ζ(s)|2

|s|2
dt <

∫ ∞
T

( 1
u2
∂F (T, u)

∂u
+ 2
u3 r

+(T, u)
)

du,

for appropriate choices of F and r+, which are taken as follows.
For 0 < σ < 1

2 , we use Theorem 4.5 and the observation that the integral
of |ζ(σ+ it)|2 in [T, u] is bounded by the integral in [1, u]. For σ = 1

2 , we use
Theorem 4.3 and the same observation. For 1

2 < σ ≤ 1, we use the upper
bound in (4.17) replacing σ by 1− σ. �

When σ = 0, note by Proposition 4.4 that the main term of
∫∞
T
|ζ(s)|2
|s|2 dt

is π2

12
∫∞
T

u
σ2+u2 du = π2

12 ·
1
2 log(σ2 + u2)

∣∣∣∞
T

= ∞, so that the integral is
divergent.

5. Numerical considerations
In case (1) of Theorem 1.1, we only show the bound from Theorem 4.6,

since it is always stronger than the one from Theorem 3.1. In case (3), we
chose T = 1040 because the threshold where the second bound is better
than the first sits in (1039, 1040].

In case (2), T = 639 is the lowest integer at which for some σ ∈
(1

2 , 1
)
the

second bound is stronger than the first. In Table 5.1 we give thresholds T
for all σ ∈ 1

20N∩
(1

2 , 1
)
. We also present thresholds for σ ∈ 1

100N∩
(1

2 ,
2
5
)
for

the bounds of Theorems 3.1 and 4.6: for the same σ, these sharper bounds
yield a lower T than the ones from Theorem 1.1.

In case (4), T = 2223 is the lowest integer at which for some σ ∈
(
0, 1

2
)
the

second bound is stronger than the first. Table 5.2 gives thresholds between
the bounds of Theorem 1.1 or between those in Theorems 3.1 and 4.6.
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In the tables, the significant digits of the higher entries of T have been
reduced for simplicity. To obtain the reported approximations, the threshold
has been rounded up.

Lastly: the loss of precision in Theorems 1.1 and 1.2 with respect to The-
orems 3.1, 4.6, 4.3 and 4.5 may be significant, especially for σ 6∈

{
0, 1

2 , 1
}
.

In Section 1, we favored simplicity in the statements, provided that they
showed the correct asymptotics for the main terms and the correct order
of the error terms for T → ∞ and σ tending to 0, 1

2 , 1. Readers wanting
sharper bounds are advised to rely on the stronger estimates of Section 3
and Section 4.

Table 5.1. T for σ > 1
2 .

σ Thm. 1.1 σ Thms. 3.1-4.6
0.55 ≈ 6.82·1017 0.51 ≈ 4.92·1043

0.6 978617582 0.52 ≈ 2.81·1019

0.65 1197629 0.53 ≈ 1.24·1011

0.7 45124 0.54 3571099
0.75 6802 0.55 1869
0.8 2095 0.56 (< 200)
0.85 1004 0.57 (< 200)
0.9 678 0.58 (< 200)
0.95 694 0.59 298

Table 5.2. T for σ < 1
2 .

σ Thm. 1.1 Thms. 3.1-4.6
0.05 2833 1049
0.1 2233 1149
0.15 2953 1961
0.2 5921 4886
0.25 20025 19970
0.3 157195 182209
0.35 6443047 7902814
0.4 ≈ 1.71·1010 ≈ 1.61·1010

0.45 ≈ 1.07·1021 ≈ 1.45·1020
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