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The distribution of numbers with many ordered
factorizations

par Noah LEBOWITZ-LOCKARD

Résumé. Soit g(n) le nombre de factorisations de n en produit ordonné de
facteurs plus grands que 1. On trouve des bornes précises pour les moments
positifs de g. On utilise ces résultats pour estimer le nombre de n ≤ x tels
que g(n) ≥ xα pour tous les α positifs. En outre, soient G(n) et gP(n) les
nombres de factorisations de n en produit ordonné de facteurs distincts plus
grands que 1 et en produit ordonné de facteurs premiers respectivement. On
donne des bornes inférieures pour les moments positifs de G et gP .

Abstract. Let g(n) be the number of ordered factorizations of n into num-
bers larger than 1. We find precise bounds on the positive moments of g. We
use these results to estimate the number of n ≤ x satisfying g(n) ≥ xα for all
positive α. In addition, let G(n) and gP(n) be the number of ordered factor-
izations of n into distinct numbers larger than 1 and primes, respectively. We
also bound the positive moments of G and gP from below.

1. Introduction
Let g(n) be the number of ordered factorizations of n into numbers larger

than 1. For example, g(18) = 8 because the ordered factorizations of 18 are

18, 9 · 2, 2 · 9, 6 · 3, 3 · 6, 3 · 3 · 2, 3 · 2 · 3, 2 · 3 · 3.

In 1931, Kalmár [11] found an asymptotic estimate for the sum of g(n) for
n ≤ x, namely ∑

n≤x
g(n) ∼ − 1

ρζ ′(ρ)x
ρ,

where ζ is the Riemann zeta function and s = ρ ≈ 1.73 is the unique solu-
tion to ζ(s) = 2 in (1,∞). Kalmár found the first error term for this equa-
tion, which Ikehara [9] subsequently improved. Most recently, Hwang [8]
proved that∑

n≤x
g(n) = − 1

ρζ ′(ρ)x
ρ +O

(
xρ exp(−c(log2 x)(3/2)−ε)

)
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for all positive ε where c = c(ε) is a positive constant. (Throughout this
paper, logk refers to the kth iterate of the logarithm. In addition, all error
terms apply as x→∞.)

There have also been numerous results on the maximal order of g(n).
Clearly, g(n) � nρ for all n. In 1936, Hille [7] proved that for any ε > 0,
there exist infinitely many n for which g(n) > nρ−ε. Multiple people [2, 3,
12] refined Hille’s bound. The best known result on the maximal order of
g(n) comes from Deléglise, Hernane, and Nicolas [2, Théorème 3], namely
that there exist positive constants C1 and C2 such that

xρ exp
(
−C1

(log x)1/ρ

log2 x

)
≤ max

n≤x
g(n) ≤ xρ exp

(
−C2

(log x)1/ρ

log2 x

)
for sufficiently large x. (The authors conjecture that there exists a positive
constant C for which

max
n≤x

g(n) = xρ exp
(
−(C + o(1))(log x)1/ρ

log2 x

)
.

For such a value of C, we would have C2 ≤ C ≤ C1.)
From here on, all instances of C1 and C2 refer to any pair of constants

satisfying

xρ exp
(
−C1

(log x)1/ρ

log2 x

)
≤ max

n≤x
g(n) ≤ xρ exp

(
−C2

(log x)1/ρ

log2 x

)
for sufficiently large x. In particular, they have the same values in Theo-
rems 1.2 and 1.3. In Section 8, we introduce C3 and C4, which also have
fixed values. If a result refers to a constant C, the value of C is specific to
that result. Beginning in the next section, we introduce a series of constants
c1, c2, . . . The only constraint on a given ci is that it be large with respect
to ci−1 and β. Note that the ci’s are only relevant when β ≤ 1/ρ.

Throughout this paper, o(1) means that a function goes to 0 as x→∞,
at a rate depending on all other parameters. The rate at which this occurs
is dependent upon β unless otherwise stated. The constant multiple implied
by the � symbol also depends on β.

It is easy to bound the negative moments of g. If β ≥ 0, then∑
n≤x

g(n)−β = x1+o(1).

The sum is at most x because g(n)−β ≤ 1 for all n and � x/ log x because
g(p)−β = 1 for all prime p. In fact, Just and the author [10] recently proved
that ∑

n≤x
g(n)−β,

∑
n≤x

g̃(n)−β,
∑
n≤x

G(n)−β
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are all
x

log x exp
(
(1 + o(1))(1 + β)(log 2)β/(1+β)(log2 x)1/(1+β)

)
,

where g̃(n) (resp. G(n)) is the number of ordered factorizations of n into
coprime (resp. distinct) parts larger than 1. In addition, we bounded the
positive moments of g̃ [10, Theorem 1.8]. If β ∈ (0, 1), then∑

n≤x
g̃(n)β = x exp

(
(1 + o(1)) 1− β

(log 2)β/(1−β) (log2 x)1/(1−β)
)
.

(For the corresponding sum with β ≥ 1, see [10, Theorems 1.2, 1.7].) Using
a similar proof, we obtain a lower bound for the corresponding sum of g(n)β
which is larger than the bound we obtain from the sum of g̃(n)β. We also
bound this quantity from above.

Theorem 1.1. If β ∈ (0, 1/ρ), then∑
n≤x

g(n)β ≥ x exp((Cg + o(1))(log2 x)1/(1−β)),

with

Cg = 1− β
(log 2)β/(1−β) exp

(
β

(log 2)(1− β)
∑
p

1
ep1/β − 1

)
.

In addition, ∑
n≤x

g(n)β = x exp((log x)o(1)).

For the larger moments of g, we obtain notably larger bounds. In par-
ticular, there is a significant increase at β = 1/ρ. For all β < 1/ρ, the
exponent of log x in the exponent is 0. However, at β = 1/ρ, the exponent
increases to 1/ρ.

Theorem 1.2. If β ∈ [1/ρ, 1), then

xρβ exp
(
C2(1− β)(log x)1/ρ

log2 x

)
≤
∑
n≤x

g(n)β

≤ xρβ exp
(

(1 + o(1))2
( 2

log 2

)1/ρ
(log x)1/ρ log2 x

)
for sufficiently large x.

Theorem 1.3. If β > 1, then

xρβ exp
(
−C1β

(log x)1/ρ

log2 x

)
�
∑
n≤x

g(n)β � xρβ exp
(
−C2(β − 1)(log x)1/ρ

log2 x

)
.
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Asymptotics for the moments and maximal order of the unordered fac-
torization function are already known [1, 10, 16].

We also show that the β = 1/ρ case of Theorem 1.2 implies the following
result about the distribution of large values of g(n).

Theorem 1.4. Fix ε > 0. As x→∞, we have

#{n ≤ x : g(n) ≥ xα} = x1−(α/ρ)+o(1)

uniformly for all α ∈ [0, ρ− ε].

Let G(n) and gP(n) be the number of ordered factorizations of n into
distinct parts greater than 1 and prime parts, respectively. As with g(n),
asymptotic formulas for the sum and negative moments for these func-
tions are already known [5, 10, 14]. We find lower bounds for the positive
moments of these functions using techniques similar to the ones we used
for g(n).

Acknowledgments. The author wishes to thank Gérald Tenenbaum for
his assistance with the smooth number computations.

2. Preliminary results
Let c1 be a large constant. For a given number n, let A and B be the

(c1(log x)β)-smooth and (c1(log x)β)-rough parts of n, respectively. In other
words, n = AB, where every prime factor of A is at most c1(log x)β and
every prime factor of B is greater than c1(log x)β. We may write∑

n≤x
g(n)β =

∑
A≤x

A (c1(log x)β)-smooth

∑
B≤x/A

B (c1(log x)β)-rough

g(AB)β.

Let Ω(n) be the number of (not necessarily distinct) prime factors of n.
For a given M , let Ω>M (n) be the number of prime factors of n which are
> M . Before proving our main theorems, we must write a few results.

Lemma 2.1 ([12, Lemma 2.5]). For any two integers n1 and n2, we have

g(n1n2) ≤ g(n1) · (2Ω(n1n2))Ω(n2).

Because A ≤ x, we have Ω(A) ≤ (logA)/(log 2). Because B ≤ x is
(c1(log x)β)-rough, we have

Ω(B) ≤ logB
log(c1(log x)β) ≤

1
β

log x
log2 x

.

Corollary 2.2. For all n ≤ x, we have

g(n) ≤ g(A) ·
( 2

log 2 log x
)Ω(B)

.
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In the proof of [15, Lemma 8], Pollack proves the following result, but
does not explicitly state it.

Lemma 2.3. For all y ≤ x, we have∑
n≤T

yΩ>2y(n) ≤ T exp(2y log2 x),

uniformly for T ∈ [1, x].

We close this section with a theorem about the distribution of smooth
numbers. Let Ψ(x, y) be the number of y-smooth numbers up to x.

Theorem 2.4 ([18, Theorem III.5.2]). Fix x ≥ y ≥ 2. We have

Ψ(x, y) = exp
((

1 +O

( 1
log2 x

+ 1
log y

))
Z

)
,

with
Z = log x

log y log
(

1 + y

log x

)
+ y

log y log
(

1 + log x
y

)
.

3. Large values of β

We establish precise bounds on the (1/ρ)-th moment of g(n), which we
then use to obtain bounds on the β-th moment of g for all β > 1/ρ.

Theorem 3.1. We have∑
n≤x

g(n)1/ρ ≤ x exp
(

(1 + o(1))2
( 2

log 2

)1/ρ
(log x)1/ρ log2 x

)
.

Proof. We rewrite g(n) as g(AB) and apply Corollary 2.2:∑
n≤x

g(n)1/ρ =
∑
A≤x

A (c1(log x)1/ρ)-smooth

∑
B≤x/A

B (c1(log x)1/ρ)-rough

g(AB)1/ρ

≤
∑
A≤x

A (c1(log x)1/ρ)-smooth

g(A)1/ρ ∑
B≤x/A

B (c1(log x)1/ρ)-rough

( 2
log 2 log x

)(1/ρ)Ω(B)
.

By definition, Ω(B) = Ω>c1(log x)1/ρ(n). Lemma 2.3 gives us

∑
B≤x/A

B (c1(log x)1/ρ)-rough

( 2
log 2 log x

)(1/ρ)Ω
>c1(log x)1/ρ (n)

≤ x

A
exp

(
2
( 2

log 2

)1/ρ
(log x)1/ρ log2 x

)
,
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which implies that∑
n≤x

g(n)1/ρ

≤ x exp
(

2
( 2

log 2

)1/ρ
(log x)1/ρ log2 x

) ∑
A≤x

A (c1(log x)1/ρ)-smooth

g(A)1/ρ

A
.

Because g(A)� Aρ, we have g(A)1/ρ/A� 1. Hence,

∑
n≤x

g(n)1/ρ ≤ x exp
(

2
( 2

log 2

)1/ρ
(log x)1/ρ log2 x

)
Ψ(x, c1(log x)1/ρ).

By Theorem 2.4,

Ψ(x, c1(log x)1/ρ) = exp(O((log x)1/ρ)),

which implies that

∑
n≤x

g(n)1/ρ ≤ x exp
(

(1 + o(1))2
( 2

log 2

)1/ρ
(log x)1/ρ log2 x

)
. �

While the following corollary applies to all β > 1/ρ, it is only useful
when β ≤ 1 as well. Theorem 3.4 supersedes this result when β > 1.

Corollary 3.2. If β ≥ 1/ρ, then

∑
n≤x

g(n)β ≤ xρβ exp
(

(1 + o(1))2
( 2

log 2

)1/ρ
(log x)1/ρ log2 x

)
.

Proof. We have

∑
n≤x

g(n)β ≤
(

max
n≤x

g(n)
)β−(1/ρ) ∑

n≤x
g(n)1/ρ

≤
(
xρ exp

(
−C2

(log x)1/ρ

log2 x

))β−(1/ρ)

· x exp
(

(1 + o(1))2
( 2

log 2

)1/ρ
(log x)1/ρ log2 x

)

= xρβ exp
(

(1 + o(1))2
( 2

log 2

)1/ρ
(log x)1/ρ log2 x

)
. �

We close this section with a few short proofs of our remaining bounds.
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Theorem 3.3. For x sufficiently large, we have∑
n≤x

g(n)β ≥ xρβ exp
(
C2(1− β)(log x)1/ρ

log2 x

)

for all β < 1.

Proof. We have ∑
n≤x

g(n) ≤
(

max
n≤x

g(n)
)1−β ∑

n≤x
g(n)β.

Therefore, ∑
n≤x

g(n)β ≥
(

max
n≤x

g(n)
)−(1−β) ∑

n≤x
g(n)

≥ xρβ exp
(
C2(1− β)(log x)1/ρ

log2 x

)
. �

Though this theorem applies to all β ≤ 1, it is only useful when β ≥ 1/ρ,
as we already know that the sum is at least bxc.

Theorem 3.4. For x sufficiently large, we have

xρβ exp
(
−C1β

(log x)1/ρ

log2 x

)
≤
∑
n≤x

g(n)β ≤ xρβ exp
(
−C2(β − 1)(log x)1/ρ

log2 x

)

for all β > 1.

Proof. For the lower bound, we have∑
n≤x

g(n)β ≥
(

max
n≤x

g(n)
)β
≥ xρβ exp

(
−C1β

(log x)1/ρ

log2 x

)
.

In addition,∑
n≤x

g(n)β ≤
(

max
n≤x

g(n)
)β−1 ∑

n≤x
g(n) ≤ xρβ exp

(
−C2(β − 1)(log x)1/ρ

log2 x

)

gives us the upper bound. �

From Theorem 3.1, we obtain Theorem 1.4.

Theorem 3.5. Fix ε > 0. As x→∞,

#{n ≤ x : g(n) ≥ xα} = x1−(α/ρ)+o(1)

uniformly for all α ∈ [0, ρ− ε].
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Proof. For a given α, define
Sα = {n ≤ x : g(n) ≥ xα}.

By definition, ∑
n∈Sα

g(n)1/ρ ≥
∑
n∈Sα

xα/ρ = xα/ρ ·#Sα.

From Theorem 3.1 we obtain∑
n∈Sα

g(n)1/ρ ≤
∑
n≤x

g(n)1/ρ

= x exp
(

(1 + o(1))2
( 2

log 2

)1/ρ
(log x)1/ρ log2 x

)
.

Putting these inequalities together gives us

#Sα ≤ x1−(α/ρ) exp
(

(1 + o(1))2
( 2

log 2

)1/ρ
(log x)1/ρ log2 x

)
= x1−(α/ρ)+o(1).

Fix δ > 0. There exists some m ≤ x(1+δ)α/ρ with the property that

g(m) > (x(1+δ)α/ρ)ρ/(1+δ) = xα.

Therefore,

#Sα ≥ #{n ≤ x : m|n} ∼ x/m ≥ x1−(1+δ)(α/ρ).

Taking the limit as δ → 0 shows that

#Sα ≥ x1−(α/ρ)+o(1),

completing our proof. �

4. Small values of β

Using the (1/ρ)-th moment of g(n) and the results from Section 2, we
obtain the following upper bound for the small positive moments of g(n).
(For every result in the next two sections, we let β ∈ (0, 1/ρ).)

Theorem 4.1. For all β, we have∑
n≤x

g(n)β ≤ x exp((log x)β2+o(1)).

In the next section, we prove the following theorem.

Theorem 4.2. If there exists a constant C > 1 such that∑
n≤x

g(n)β ≤ x exp((log x)βC+o(1))
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uniformly for all β, then∑
n≤x

g(n)β ≤ x exp((log x)βC+1+o(1))

uniformly for all β as well.

Applying this result arbitrarily many times allows us to obtain the upper
bound in Theorem 1.1, which we rewrite here.

Theorem 4.3. We have∑
n≤x

g(n)β = x exp((log x)o(1)).

Before doing any of this, we write a few lemmas. We first show that we
may assume that g(n) is small. Afterwards, we prove that we may assume
that A and Ω(B) are small as well.

Lemma 4.4. For all β, we have∑
n≤x

g(n)>exp(c2(log x)1/ρ log2 x)

g(n)β ≤ x exp((log x)o(1))

for some positive constant c2.

Proof. Fix a large number M . We consider∑
k>M

∑
n≤x

ek≤g(n)<ek+1

g(n)β.

We then show that for any k, the inner sum is sufficiently small. Note that
the number of k for which g(n) < ek+1 for some n ≤ x is on the order of
log x. We have ∑

n≤x
ek≤g(n)<ek+1

g(n)β � eβk#{n ≤ x : g(n) ≥ ek}.

From the proof of Theorem 3.5, we see that

#{n ≤ x : g(n) ≥ ek}

≤ xe−k/ρ exp
(

(1 + o(1))2
( 2

log 2

)1/ρ
(log x)1/ρ log2 x

)
,
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which implies that∑
n≤x

ek≤g(n)<ek+1

g(n)β

≤ x exp
(
−k

(1
ρ
− β

)
+ (1 + o(1))2

( 2
log 2

)1/ρ
(log x)1/ρ log2 x

)
.

If

k >

(
2ρ

1− ρβ

( 2
log 2

)1/ρ
+ ε

)
(log x)1/ρ log2 x

for some ε > 0, then the upper bound is O(x). �

From here on, we assume that
g(n) ≤ exp(c2(log x)1/ρ log2 x).

From [12, Lemma 2.6], we have

g(n)� 2Ω(n),

allowing us to assume that
Ω(n) ≤ (log x)(1/ρ)+o(1).

Lemma 4.5. We have∑
n≤x

g(n)β ≤ x exp((log x)(β/ρ)+o(1))
∑
A≤x

A (c1(log x)β)-smooth

g(A)β

A
.

Proof. Recall that∑
n≤x

g(n)β =
∑
A≤x

A (c1(log x)β)-smooth

∑
B≤x/A

B (c1(log x)β)-rough

g(AB)β.

By Lemma 2.1,

g(AB) ≤ g(A) · (2Ω(n))Ω(B) ≤ g(A) · ((log x)(1/ρ)+o(1))Ω
>c1(log x)β (n)

.

Therefore,∑
n≤x

g(n)β

≤
∑
A≤x

A (c1(log x)β)-smooth

g(A)β
∑

B≤x/A
B (c1(log x)β)-rough

((log x)(β/ρ)+o(1))Ω
>c1(log x)β (n)

.

By Lemma 2.3, the final sum in this expression is at most
x

A
exp((log x)(β/ρ)+o(1)).
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We now have∑
n≤x

g(n)β ≤ x exp((log x)(β/ρ)+o(1))
∑
A≤x

A (c1(log x)β)-smooth

g(A)β

A
. �

This result allows us to bound A and Ω(B).

Lemma 4.6. For a sufficiently large constant c3,∑
n≤x

A>exp(c3(log x)β)

g(n)β = o(x).

Proof. Fix a large number M . By the previous result, we have∑
n≤x
A>M

g(n)β ≤ x exp((log x)(β/ρ)+o(1))
∑

M<A≤x

g(A)β

A
.

Note that g(A)β � Aρβ, which implies that∑
M<A≤x

g(A)β

A
�M−(1−ρβ)Ψ(x, c1(log x)β).

By Theorem 2.4,

Ψ(x, c1(log x)β) = exp
(

(1 + o(1))c1(1− β)
β

(log x)β
)
.

If
M > exp

((
c1(1− β)
β(1− ρβ) + ε

)
(log x)β

)
for some ε > 0, then

M−(1−ρβ)Ψ(x, c1(log x)β) ≤ exp(−(ε+ o(1))(log x)β),
which implies that ∑

n≤x
A>M

g(n)β = o(x). �

Lemma 4.7. For all ε > 0, we have∑
n≤x

Ω(B)>(log x)β+ε

g(n)β = o(x).

Proof. Once again, let M be a large number. By the previous theorem, we
may assume that A ≤ exp(c3(log x)β). We have∑

n≤x
A≤exp(c3(log x)β)

Ω(B)>M

g(n)β ≤
∑

A≤exp(c3(log x)β)
g(A)β

∑
B≤x/A

Ω(B)>M

(2Ω(n))βΩ(B).



594 Noah Lebowitz-Lockard

By assumption,
Ω(n) ≤ (log x)(1/ρ)+o(1).

By definition, Ω(B) = Ω>c1(log x)β (B). In addition, multiplying each term by
exp(βΩ>c1(log x)β (B)− βM)

increases the sum. Hence,∑
B≤x/A

Ω(B)>M

(2Ω(n))βΩ(B) ≤
∑

B≤x/A
((log x)(1/ρ)+o(1))βΩ

>c1(log x)β (n)

· exp(βΩ>c1(log x)β (B)− βM)

= exp(−βM)
∑

B≤x/A
((log x)(1/ρ)+o(1))βΩ

>c1(log x)β (B)

≤ x

A
exp((log x)(β/ρ)+o(1) − βM).

If M > (log x)β+ε, then this sum is at most
x exp(−(log x)β+ε+o(1))

A
.

Plugging this back into our original formula gives us∑
n≤x

A≤exp(c2(log x)β)
Ω(B)>M

g(n)β ≤ x exp(−(log x)β+ε+o(1))
∑

A≤exp(c3(log x)β)

g(A)β

A
.

Note that the rightmost sum is O(exp(c3(log x)β)) because g(A)β/A =
O(1). We now have∑

n≤x
A≤exp(c3(log x)β)

Ω(B)>M

g(n)β ≤ x exp(−(log x)β+ε+o(1)). �

To summarize, we may now assume that logA,Ω(B) ≤ (log x)β+o(1).
From these assumptions, we may improve Lemma 4.5.

Theorem 4.8. We have∑
n≤x

g(n)β ≤ x exp((log x)β2+o(1))
∑

A≤exp((log x)β+o(1))

g(A)β

A
.

Proof. Once again, we have

g(AB) ≤ g(A) · (2Ω(n))Ω
>c1(log x)β (n)

.

In this case, we have a more precise bound for Ω(n). Note that
Ω(A)� logA ≤ (log x)β+o(1), Ω(B) ≤ (log x)β+o(1).
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Therefore,
g(AB) ≤ g(A) · ((log x)β+o(1))Ω

>c1(log x)β (n)
.

We now have∑
n≤x

g(AB)β ≤
∑

A≤exp(c2(log x)β)
g(A)β

∑
B≤x/A

((log x)β+o(1))βΩ
>c1(log x)β (n)

.

By Lemma 2.3, the rightmost sum is at most
x

A
exp((log x)β2+o(1)). �

Using these results, we obtain a new upper bound on the sum of g(n)β.

Theorem 4.9. We have∑
n≤x

g(n)β ≤ x exp((log x)β2+o(1)).

Proof. Because of the previous result, it is sufficient to show that∑
A≤c3 exp((log x)β)

g(A)β

A
= exp((log x)o(1)).

We break the sum into “e-adic” intervals, based on the sizes of A and g(A):

∑
A≤exp(c3(log x)β)

g(A)β

A

=
∑

k≤c2(log x)β log2 x

∑
m≤ρc2(log x)β log2 x

∑
ek≤A<ek+1

em≤g(A)<em+1

g(A)β

A
.

Because the number of possible k and m is sufficiently small, we only need
to show that ∑

ek≤A<ek+1

em≤g(A)<em+1

g(A)β

A
= exp((log x)o(1))

for all possible k and m.
For any k, m, we have∑

ek≤A<ek+1

em≤g(A)<em+1

g(A)β

A
�

∑
ek≤A<ek+1

em≤g(A)<em+1

emβ−k

≤ emβ−k#{A < ek+1 : g(A) ≥ em}.
By Theorem 3.5,

#{A < ek+1 : g(A) ≥ em} ≤ ek−(m/ρ)+o(k),
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which implies that ∑
ek≤A<ek+1

em≤g(A)<em+1

g(A)β

A
≤ emβ−(m/ρ)+o(k).

Fix a constant ε. If k < m/ε, then the exponent is negative for x sufficiently
large because β < 1/ρ.

Suppose m ≤ εk. We have∑
ek≤A<ek+1

g(A)<eεk+1

g(A)β

A
≤

∑
ek≤A<ek+1

A−(1−ε+o(1))

≤ e−(1−ε+o(1))kΨ(ek+1, c1(log x)β).

By assumption, k ≤ c3(log x)β. If k = o((log x)β), then

Ψ(ek+1, c1(log x)β) = exp
(

(1 + o(1))
(
k − 1

β

k log k
log2 x

))
by Theorem 2.4. We now have∑

ek≤A<ek+1

g(A)=eo(k)

g(A)β

A
≤ exp

(
−(1 + o(1))

( 1
β

k log k
log2 x

− εk
)

+ o(k)
)
.

If k > (log x)C for some constant C > βε, then this quantity is o(1). Oth-
erwise, the sum is still at most exp((log x)βε+o(1)) ≤ exp((log x)(ε/ρ)+o(1)).
Letting ε go to 0 gives us our desired result. �

5. Improving our bound
In the previous section, we obtained an upper bound for the sum of

g(n)β for all β < 1/ρ. Using this bound, we can obtain a substantially
better result using the following theorem.

Theorem 5.1. Let C > 1 be a constant. Suppose∑
n≤x

g(n)β ≤ x exp((log x)βC+o(1))

for all β ∈ (0, 1/ρ). Then,∑
n≤x

g(n)β ≤ x exp((log x)βC+1+o(1))

for all such β as well.
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Proof. Let k be a large number. Let S be the set of all n ≤ x satisfying
ek ≤ g(n) < ek+1. We consider the sum of g(n)β over all n ∈ S. Note that∑

n∈S
g(n)β ≤ eβeβk#S ≤ e1/ρeβk#S.

We bound the righthand side of the inequality above. Let β0 ∈ (β, 1/ρ).
We have ∑

n∈S
g(n)β0 ≥ eβ0k#S.

By assumption, ∑
n≤x

g(n)β0 ≤ x exp((log x)βC0 +o(1)).

In particular, for any ε, there exists a number N such that if x > N , then∑
n≤x

g(n)β0 ≤ x exp((log x)βC0 +ε),

which implies that

#S ≤ xe−β0k exp((log x)βC0 +ε)

for all sufficiently large x. (Note that N is independent of k.) Plugging this
into our g(n)β sum gives us∑

n∈S
g(n)β ≤ xe−(β0−β)k exp((log x)βC0 +ε).

If k > (log x)βC0 +ε, then this quantity is o(x). Because the number of such k
is sufficiently small, we may assume that k ≤ (log x)βC0 +ε. We may therefore
assume that g(n) ≤ exp((log x)βC0 +ε+o(1)) and Ω(n) ≤ (log x)βC0 +ε+o(1). If x
is sufficiently large, we have Ω(n) ≤ (log x)βC0 +2ε.

Using this bound on Ω(n), we may bound the sum of g(n)β. We have∑
n≤x

Ω(n)≤(log x)β
C
0 +2ε

g(n)β ≤
∑
A≤x

Ω(A)≤(log x)β
C
0 +2ε

g(A)β
∑

B≤x/A
Ω(B)≤(log x)β

C
0 +2ε

(2Ω(n))βΩ(B).

Suppose βC0 + ε < β. Plugging in our bound on Ω(n) allows us to bound
the rightmost sum:∑

B≤x/A
Ω(B)≤(log x)β

C
0 +2ε

(2Ω(n))βΩ(B) ≤
∑

B≤x/A
((log x)βC0 +2ε)βΩ

>c1(log x)β (n)

≤ x

A
exp((log x)ββC0 +2βε+o(1)).
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For x sufficiently large, we may bound the sum by
x

A
exp((log x)ββC0 +3βε).

We now have∑
n≤x

Ω(n)≤(log x)β
C
0 +2ε

g(n)β ≤ x exp((log x)ββC0 +3βε)
∑
A≤x

Ω(A)≤(log x)β
C
0 +2ε

g(A)β

A
.

Our bound on Ω(A) gives us A ≤ exp((log x)βC0 +ε+o(1)). In the proof of
Theorem 4.9, we showed that the sum of g(A)β/A over all such A is
exp((log x)o(1)). For x sufficiently large, the sum is at most exp((log x)βε).
Putting everything together gives us∑

n≤x
g(n)β ≤ x exp((log x)ββC0 +4βε).

Our desired result comes from the fact that we may assume that β0 − β
and ε are both arbitrarily small. �

Applying this result arbitrarily many times proves that∑
n≤x

g(n)β = x exp((log x)o(1)).

6. A lower bound for the small moments
Let g̃(n) be the number of factorizations of n into coprime parts greater

than 1. Just and the author [10] recently proved that∑
n≤x

g̃(n)β = x exp
(

(1 + o(1)) 1− β
(log 2)β/(1−β) (log2 x)1/(1−β)

)
for all β ∈ (0, 1). Because g(n) ≥ g̃(n) for all n, this quantity is a lower
bound for the sum of g(n)β. We provide a slightly larger lower bound for this
sum. Before doing so, we write a theorem that will prove useful [17, The-
orem 3.1] (see [17, Theorem 4.1] for a corresponding upper bound and [6,
Corollary 2] for a more precise version of this result on a smaller interval).
Let π(x, k) be the number of n ≤ x with exactly k distinct prime factors.

Theorem 6.1. For

log2 x(log3 x)2 ≤ k ≤ log x
3 log2 x

,

we have

π(x, k) ≥ x

k! log x exp
((

logL0 + logL0
L0

+O

( 1
L0

))
k

)
,

with
L0 = log2 x− log k − log2 k.
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We also impose a lower bound on the smallest prime factors of our values
of n. For a given number R, we let π(x, k,R) be the number of R-rough
n ≤ x with exactly k distinct prime factors.

Corollary 6.2. Let x and k satisfy the conditions of the previous theorem
and let R be a fixed positive number. As x→∞, we have

π(x, k,R) ≥ x

k! log x exp
((

logL0 + logL0
L0

+O

( 1
L0

))
k

)
.

Proof. Let n ≤ x be an R-rough number with exactly k distinct prime
factors. In the proof of the previous theorem, Pomerance already assumes
that every prime factor of n is greater than or equal to k2, which we may
assume is greater than R. In addition, this proof is entirely self-contained
except for a reference to [17, Proposition 2.1]. However, it is straightforward
to modify the proof of this result to assume that n is R-rough. �

Using the results of [2], we bound g(n)β on a suitable set of n ≤ x and
multiply this bound by the size of the set.

Definition 6.3 ([2, Définition 2.1] (see also [4, Theorem 1])). For a tuple
(a1, . . . , ar), let c = c(a1, . . . , ar) be the unique solution to the equation

r∏
i=1

(
1 + ai

c

)
= 2.

Definition 6.4 ([2, Définition 3.1]). With c defined above, we have

F := F (a1, . . . , ar) =
r∑
i=1

ai log
(

1 + c

ai

)
.

Lemma 6.5 ([2, Théorème 2]). Let n = pa1
1 · · · parr . We have

g(n)� exp(F − r)
√
a1 · · · ar

.

Theorem 6.6. If β ∈ (0, 1/ρ), then∑
n≤x

g(n)β ≥ x exp((Cg + o(1))(log2 x)1/(1−β)),

with

Cg = 1− β
(log 2)β/(1−β) exp

(
β

(log 2)(1− β)
∑
p

1
ep1/β − 1

)
.

Proof. Let k be a number on the order of (log2 x)C for some C > 1 and
let (α1, . . . , αr) be a tuple of positive real numbers which is independent of
x. Let S be the set of numbers ≤ x of the form pα1k

1 · · · pαrkr m, where pi is
the ith prime and m is a pr-rough number with exactly k distinct prime
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factors. We bound #S from below, in addition to providing a lower bound
for g(n) for all n ∈ S.

Because the pi and αi are fixed, the number of elements of S is equal to
the number of possible values of m. By assumption,

m ≤ x

pα1k
1 · · · pαrkr

.

Therefore,

#S = π

(
x

pα1k
1 · · · pαrkr

, k, pr

)

≥ x exp
(
k log3 x− k log k +

(
1−

(
r∑
i=1

(log pi)αi

)
+ o(1)

)
k

)
.

At this point, we bound g(n). Because we only need a lower bound, we
assume that m is squarefree. In our case, we have(

1 + 1
c

)k r∏
i=1

(
1 + αik

c

)
= 2.

Though we cannot determine c exactly, we can still obtain a suitable lower
bound. Because (

1 + 1
c

)k
≤ 2,

we have

c ≥ 1
21/k − 1

∼ k

log 2 ,

giving us

F = k log(1 + c) +
r∑
i=1

αik log
(

1 + c

αik

)

≥ k log k +
((

r∑
i=1

αi log
(

1 + 1
(log 2)αi

))
− log2 2 + o(1)

)
k.

Note that (α1k) · · · (αrk) = exp(o(k)). Hence,

g(n) ≥ exp
(
k log k+

((
r∑
i=1

αi log
(

1 + 1
(log 2)αi

))
− 1− log2 2 + o(1)

)
k

)

for all n ∈ S.
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We combine our estimates in order to bound the sum:∑
n≤x

g(n)β ≥
∑
n∈S

g(n)β

≥
(

min
n∈S

g(n)
)β

#S

≥ x exp(k log3 x− (1− β)k log k + (M + o(1))k),

with

M = 1− (1 + log2 2)β +
r∑
i=1

αi

(
β log

(
1 + 1

(log 2)αi

)
− log pi

)
.

At this point, we select the αi’s in order to maximize M . For all i, we
have

∂M

∂αi
= β log

(
1 + 1

(log 2)αi

)
− log pi −

β

1 + (log 2)αi
= 0.

Because we cannot write αi in terms of pi nicely, we instead solve a similar
equation and plug our result into our formula for M . While this result is
not optimal, it still provides a lower bound. As i→∞, αi → 0. Setting αi
to 0 in the final term gives us

β log
(

1 + 1
(log 2)αi

)
− log pi − β = 0,

which implies that

αi = 1
(log 2)(ep1/β

i − 1)
.

(Technically, αik must be an integer, but rounding αik down does not
change the final result.) Hence,

M = 1− (1 + log2 2)β + β

log 2

r∑
i=1

1
ep

1/β
i − 1

.

Letting i go to ∞ gives us

M = 1− (1 + log2 2)β + β

log 2
∑
p

1
ep1/β − 1

.

In order to finish the proof, we choose k to maximize the sum of g(n)β.
Recall that∑

n≤x
g(n)β ≥ x exp(k log3 x− (1− β)k log k + (M + o(1))k).

If k > (log2 x)(1/(1−β))+ε for some ε > 0, then our bound is o(x). If k <
(log2 x)(1/(1−β))−ε, then the bound is x exp((log2 x)(1/(1−β))−ε+o(1)). Let k =
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R(log2 x)1/(1−β) for some R = (log2 x)o(1). We have∑
n≤x

g(n)β ≥ x exp(R(M − (1− β) logR+ o(1))(log2 x)1/(1−β)).

The optimal value of R is the solution to the equation
d

dR (R(M − (1− β) logR)) = M − (1− β) logR− (1− β) = 0,

namely

R = exp
(

M

1− β − 1
)
,

which implies that∑
n≤x

g(n)β ≥ x exp((1 + o(1))(1− β)R(log2 x)1/(1−β)).

We have

R = 1
(log 2)β/(1−β) exp

(
β

(log 2)(1− β)
∑
p

1
ep1/β − 1

)
,

completing the proof. �

The lower bound for the sum of g̃(n)β is the result one obtains by letting
(α1, . . . , αr) be the empty tuple.

7. Factorizations into distinct parts
Let G(n) be the number of ordered factorizations of n into distinct parts

greater than 1. Warlimont [19] showed that∑
n≤x

G(n) = x · L(x)O(1),

where
L(x) = exp

( log x log3 x

log2 x

)
.

The author and Pollack [14] recently improved this result, showing that∑
n≤x

G(n) = x · L(x)1+o(1).

In addition, we proved that for any ε > 0, there exist infinitely many n for
which

G(n) > n · L(n)1−ε.

A slight modification of the proof shows that

max
n≤x

G(n) = x · L(x)1+o(1).
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From these bounds, we can obtain a formula for the β-th moments of G for
all β > 1. We have(

max
n≤x

G(n)
)β
≤
∑
n≤x

G(n)β ≤

∑
n≤x

G(n)

β ,
which implies that ∑

n≤x
G(n)β = xβ · L(x)β+o(1).

Just and the author [10] also showed that the negative moments of G
have the same formula as the negative moments of g, up to a negligible
error. If β > 0, then∑
n≤x

G(n)−β = x

log x exp((1 + o(1))(1 + β)(log 2)β/(1+β)(log2 x)1/(1+β)).

All that remains is to estimate the small positive moments of G. We do
not provide an upper bound, but we can prove a lower bound using an
argument similar to the proof of Theorem 6.6. Because we do not have an
asymptotic formula for G(n), we use a combinatorial argument.

Once again, we let S be the set of n ≤ x of the form pα1k
1 · · · pαrkr m, where

pi is the ith prime, m is a pr-rough number with exactly k distinct prime
factors, and k is on the order of (log2 x)1/(1−β). In the previous section, we
established that

#S ≥ x exp
(
k log3 x− k log k +

(
1−

(
r∑
i=1

(log pi)αi

)
+ o(1)

)
k

)
.

We now bound G(n) for all n ∈ S. First, we write m as a product of
exactly k coprime numbers greater than 1, which we can do in k! ways.
Then, for each i, we write pαiki as a product of exactly k numbers (not
necessarily greater than 1). For each i, we can do this in(

(1 + αi)k − 1
k

)
ways. We then combine our factorizations into one k-term product. The
terms are distinct because they have distinct pr-rough parts. Hence,

G(n) ≥ k!
r∏
i=1

(
(1 + αi)k − 1

k

)
= exp(k log k

+
((

r∑
i=1

(1 + αi) log(1 + αi)− αi logαi

)
− 1 + o(1)

)
k

)
.
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Repeating the argument from the previous section gives us∑
n≤x

G(n)β

≥ x exp
(

(1 + o(1))(1−β)
(∏

p

(
1 + 1

p1/β − 1

)β/(1−β)
)

(log2 x)1/(1−β)
)

for all β ∈ (0, 1).
For all n, G(n) ≥ g̃(n). Our result is an improvement over the sum of

g̃(n)β when ∏
p

(
1 + 1

p1/β − 1

)
>

1
log 2 ,

which occurs when β > 0.438.

8. Factorizations into prime parts
Let gP(n) be the number of factorizations of n into prime parts. Hernane

and Nicolas [5] note that a result from [13] implies that∑
n≤x

gP(n) ∼ − 1
λζ ′P(λ)x

λ,

where ζP is the Riemann zeta function restricted to prime terms and λ ≈
1.40 is the unique solution in (1,∞) to ζP(λ) = 2. They also showed that
there exist positive constants C3 and C4 such that

xλ exp
(
−C3

(log x)λ

log2 x

)
≤ max

n≤x
gP(n) ≤ xλ exp

(
−C4

(log x)λ

log2 x

)
for all sufficiently large x. An argument similar to the proof of Theorem 3.4
shows that if β ≥ 1, then

xλβ exp
(
−C3β

(log x)1/λ

log2 x

)
≤
∑
n≤x

gP(n)β

≤ xλβ exp
(
−C4(β − 1)(log x)1/λ

log2 x

)
for all sufficiently large x as well.

Recall that Lemma 2.1 states that for any n1, n2 ∈ Z+, we have

g(n1n2) ≤ g(n1) · (2Ω(n1n2))Ω(n2).

It is straightforward to modify Klazar and Luca’s proof of this result to
apply to gP .

Lemma 8.1. For any two integers n1 and n2, we have
gP(n1n2) ≤ gP(n1) · (2Ω(n1n2))Ω(n2).
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From this result, we obtain variants of Corollary 3.2 and Theorem 3.3.
If β ∈ [1/λ, 1), then

xλβ exp
(
C4(1− β)(log x)1/λ

log2 x

)
≤
∑
n≤x

gP(n)β

≤ xλβ exp
(

(1 + o(1))2
( 2

log 2

)1/λ
(log x)1/λ log2 x

)
for all sufficiently large x. Applying the lemma and repeating the techniques
of Sections 4 and 5 shows that if β ∈ (0, 1/λ), then∑

n≤x
gP(n)β = x exp((log x)o(1)).

Finally, we note that for any tuple (a1, . . . , ar), we have

gP(pa1
1 · · · p

ar
r ) =

(
a1 + · · ·+ ar
a1, . . . , ar

)
.

Using this result, we obtain a lower bound for the small moments of gP . If
β < 1/λ, then∑

n≤x
gP(n)β

≥ x exp

(1 + o(1))(1− β)
(

1−
∑
p

1
p1/β

)−β/(1−β)

(log2 x)1/(1−β)

 .
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