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Multiplicative independence of modular functions

par Guy FOWLER

Résumé. Nous offrons une nouvelle preuve élémentaire de l’indépendance
multiplicative de GL+

2 (Q)-translatées, deux à deux distinctes, de la fonction
modulaire j, un résultat dû initialement à Pila et Tsimerman. Nous sommes
ainsi en mesure de généraliser ce résultat à une classe de fonctions modulaires
plus large. Nous montrons que cette classe contient un ensemble composé
de fonctions modulaires qui apparaissent naturellement comme des relève-
ments de Borcherds de certaines formes modulaires faiblement holomorphes.
Pour une fonction modulaire f appartenant à cette classe, nous déduisons
que pour chaque n ≥ 1, le nombre de n-uplets de points f -spéciaux distincts
qui sont multiplicativement dépendants et minimaux pour cette propriété est
fini. Cela généralise un théorème de Pila et Tsimerman sur les invariants mo-
dulaires singuliers. Nous montrons ensuite comment ces résultats sont liés à
la conjecture de Zilber–Pink pour les sous-variétés algébriques de la variété
de Shimura mixte Y (1)n ×Gn

m, et nous prouvons quelques cas particuliers de
cette conjecture.

Abstract. We provide a new, elementary proof of the multiplicative inde-
pendence of pairwise distinct GL+

2 (Q)-translates of the modular j-function, a
result due originally to Pila and Tsimerman. We are thereby able to generalise
this result to a wider class of modular functions. We show that this class in-
cludes a set comprising modular functions which arise naturally as Borcherds
lifts of certain weakly holomorphic modular forms. For f a modular function
belonging to this class, we deduce, for each n ≥ 1, the finiteness of n-tuples of
distinct f -special points that are multiplicatively dependent and minimal for
this property. This generalises a theorem of Pila and Tsimerman on singular
moduli. We then show how these results relate to the Zilber–Pink conjecture
for subvarieties of the mixed Shimura variety Y (1)n × Gn

m and prove some
special cases of this conjecture.

1. Introduction

Let j : H→ C be the modular j-function, where H denotes the complex
upper half plane. A j-special point is a complex number σ such that σ =
j(τ) for some τ ∈ H with [Q(τ) : Q] = 2. The j-special points, often
called singular moduli, are the j-invariants of elliptic curves with complex
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multiplication. They are algebraic integers with many interesting arithmetic
properties, see e.g. [12].

In [26], Pila and Tsimerman investigated the multiplicative properties of
j-special points. In particular, they established the following result. (A set
of numbers {x1, . . . , xn} is called multiplicatively dependent if there exist
a1, . . . , an ∈ Z, not all zero, such that

∏
xai
i = 1.)

Theorem 1.1. [26, Theorem 1.2] Let n ≥ 1. There exist only finitely
many n-tuples (σ1, . . . , σn) of pairwise distinct j-special points σi such that
the set {σ1, . . . , σn} is multiplicatively dependent, but no proper subset of
{σ1, . . . , σn} is multiplicatively dependent.

Observe that the independence of proper subsets and the distinctness
of the σi are required to avoid trivialities. Pila and Tsimerman proved
Theorem 1.1 by an o-minimal counting argument; in particular, the result
is ineffective. The critical new ingredient in their proof was a functional
multiplicative independence result for pairwise distinct GL+

2 (Q)-translates
of the j-function. Here and throughout GL+

2 (Q) and its subgroups act on
H by Möbius transformations.

Functions f1, . . . , fn : H→ C are called multiplicatively dependent mod-
ulo constants if some relation

∏
fai
i = c holds for ai ∈ Z, not all zero, and

c ∈ C; if no such relation holds, then f1, . . . , fn are multiplicatively inde-
pendent modulo constants. The functional independence result of Pila and
Tsimerman was the following.

Theorem 1.2. [26, Theorem 1.3] Let g1, . . . , gn ∈ GL+
2 (Q). Suppose that

the functions j(g1z), . . . , j(gnz) are pairwise distinct. Then the functions
j(g1z), . . . , j(gnz) are multiplicatively independent modulo constants.

The proof of Theorem 1.2 in [26] is via an elaborate tree argument. In
particular, the method there does not readily generalise to other modular
functions. A modular function is a meromorphic function f : H → C that
is invariant under the action of SL2(Z) on H and also “meromorphic at
the cusp”. The condition of SL2(Z)-invariance implies that f has a Fourier
expansion in terms of the nome q = e2πiz; being “meromorphic at the cusp”
is then equivalent to this Fourier series having the form

f(z) =
∞∑

n=−m
a(n)qn,

for some a(n) ∈ C,m ∈ Z. The function j is a Hauptmodul for the modular
functions; that is, a function f is a modular function if and only if f may
be written as a rational function (with coefficients in C) of j (see [12,
Theorem 11.9]).

In this paper, we provide a new proof of Theorem 1.2. This uses just ele-
mentary properties of j. Notably, the proof generalises in a straightforward
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way to a wide class of modular functions, and so we establish Theorem 1.5,
a generalisation of Theorem 1.2. To state this result, we make the following
definition. Denote by Fj the standard fundamental domain for the action
of SL2(Z) on H, given by

Fj =
{
z ∈ H : −1

2 < Re(z) ≤ 1
2 , |z| ≥ 1, and |z| > 1 for −1

2 < Re(z) < 0
}
.

The map j restricts to a bijection j|Fj : Fj → C. Therefore, any non-zero
modular function f : H → C has only finitely many zeros and poles in Fj ,
and further if f is also non-constant, then f has at least one zero or pole
in Fj .

Definition 1.3. Let f : H→ C be a non-constant modular function. Enu-
merate the zeros and poles of f contained in Fj as w1, . . . , wr, where
Im(wi) ≤ Im(wi+1). We say that f satisfies the divisor condition if wr + s
is neither a zero nor a pole of f for all 0 < s < 1.

Remark 1.4. If Im(wr) ≥ 1, then the divisor condition holds if Im(wr) >
Im(wr−1).

Our generalisation of Theorem 1.2 is the following result.

Theorem 1.5. Let f : H → C be a non-constant modular function sat-
isfying the divisor condition. Let g1, . . . , gn ∈ GL+

2 (Q). If the functions
f(g1z), . . . , f(gnz) are pairwise distinct, then they are multiplicatively in-
dependent modulo constants.

The divisor condition is satisfied generically by modular functions (but
not by all such functions). In Section 3, we show that the divisor condi-
tion is in particular satisfied by all of the (infinitely many) non-constant
functions belonging to a certain multiplicative group of modular functions
with product formulae which arise as Borcherds lifts of some weakly holo-
morphic modular forms. This gives us a natural set of examples of modular
functions satisfying the divisor condition.

For f : H → C a modular function, define, in analogy with the case of
j, an f -special point to be a complex number σ such that σ = f(τ) for
some τ ∈ H with [Q(τ) : Q] = 2. If f is a modular function, then there
exists a rational function R ∈ C(t) such that f(z) = R(j(z)). The f -special
points are then precisely the images under R of the j-special points. In
particular, f -special points correspond to the CM elliptic curves, viewing
f as a function on the moduli space of elliptic curves over C given by the
modular curve Y (1) = SL2(Z)\H.

If f satisfies the divisor condition, then we are able to establish the
following finiteness result on multiplicatively dependent tuples of f -special
points, analogous to Theorem 1.1.
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Theorem 1.6. Suppose f is a non-constant modular function satisfying
the divisor condition. Let n ≥ 1. There exist only finitely many n-tuples
(σ1, . . . , σn) of distinct f -special points such that the set {σ1, . . . , σn} is
multiplicatively dependent, but no proper subset of {σ1, . . . , σn} is multi-
plicatively dependent.

For f ∈ Q(j), the proof of this result is via a modification of Pila and
Tsimerman’s o-minimal counting argument. The extension to f ∈ C(j)
proceeds by a specialisation argument. We note here that Theorem 1.6 is
ineffective.

Denote by Gm = Gm(C) the multiplicative group of complex numbers.
An n-tuple (σ1, . . . , σn) of f -special points is multiplicatively dependent if
some product

∏
σai
i , with the ai ∈ Z not all zero, lies in the trivial subgroup

{1} ≤ Gm. A natural extension of Theorem 1.6 is then to consider, given
a fixed subgroup Γ ≤ Gm, those n-tuples (σ1, . . . , σn) of f -special points
such that, for some ai ∈ Z not all zero, one has

∏
σai
i ∈ Γ.

When Γ ≤ Gm is of finite rank and f ∈ Q(j), we are able to extend
Theorem 1.6 to this setting. Recall that a subgroup Γ ≤ Gm is said to
be of finite rank if there exists Γ0 ⊂ Γ such that Γ0 is a finitely generated
subgroup of Gm and, for every γ ∈ Γ, there existsm ≥ 1 such that γm ∈ Γ0.
We thereby establish the following result. Here a set {x1, . . . , xn} is called
Γ-dependent, for Γ ≤ Gm, if there exist a1, . . . , an ∈ Z, not all zero, such
that

∏
xai
i ∈ Γ.

Theorem 1.7. Suppose f is a non-constant modular function satisfying
the divisor condition and also f ∈ Q(j). Let Γ ≤ Gm be of finite rank and
n ≥ 1. Then there exist only finitely many n-tuples (σ1, . . . , σn) of distinct
f -special points such that the set {σ1, . . . , σn} is Γ-dependent, but no proper
subset of {σ1, . . . , σn} is Γ-dependent.

The plan of this article is as follows. In Section 2, we give a new proof
of Theorem 1.2 and then generalise it to prove Theorem 1.5. Section 3
establishes a natural class of modular functions, arising via Borcherds lifts,
to which this theorem applies. In Section 4, we introduce the setting of the
mixed Shimura variety Y (1)m×Gn

m which is used for the remainder of the
paper. The proof of Theorem 1.6 is contained in Section 5. In Section 6,
we relate Theorem 1.6 to the Zilber–Pink conjecture for Y (1)n ×Gn

m. The
proof of Theorem 1.7 then takes place in Section 7. Finally, the Zilber–Pink
context of Theorem 1.7 is considered in Section 8.

We note here that several proofs in Sections 5–8 will use techniques
from the study of o-minimality, in particular point counting arguments. By
definable we will always mean definable in the o-minimal structure Ran,exp.
We identify (subsets of) C with (subsets of) R2 in the natural way. In
addition, given a function f : A→ B and n > 1, we will often, by an abuse
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of notation, also write f for the function An → Bn given by the Cartesian
power of f . It should always be clear from context which function is meant.

2. Multiplicative independence

In this section, we give a new proof of Theorem 1.2, and then show how
this method may be extended to prove the more general Theorem 1.5.

Proof of Theorem 1.2. Let g1, . . . , gn ∈ GL+
2 (Q), and suppose that the

functions j(g1z), . . . , j(gnz) are pairwise distinct. Then the cosets
[g1], . . . , [gn] ∈ PSL2(Z)\PGL+

2 (Q)
are pairwise distinct. For g ∈ GL+

2 (Q), we may, as in the proof of [23,
Proposition 7.1], write g = γh, where γ ∈ SL2(Z) and hz = rz + s for
r, s ∈ Q with 0 < r and 0 ≤ s < 1. The cosets [gi] ∈ PSL2(Z)\PGL+

2 (Q)
are pairwise distinct if and only if the corresponding linear functionals
riz + si are pairwise distinct. Different gi may have associated the same
ri, so reindex them as gi,k, associated with the functional riz + si,k, where
r1 < r2 < · · · < rl and si,k < si,k′ for k < k′.

To prove Theorem 1.2, it is enough to find z ∈ H such that j(riz+si,k) =
0 if and only if (i, k) = (1, 1). Recall that j(ζ6) = 0, where ζ6 = exp(πi/3).
Therefore, setting

z = 1
r1

(1
2 − s1,1

)
+ 1
r1

√
3

2 i ∈ H,

so that r1z + s1,1 = ζ6, gives that j(r1z + s1,1) = 0.
It remains to show that j(riz + si,k) 6= 0 for (i, k) 6= (1, 1). To do this

we use two elementary facts about j. First, that for w with 1/2 < Re(w) <
3/2, if j(w) = 0, then Im(w) <

√
3/2. Second, that j(w) 6= 0 whenever

Im(w) >
√

3/2. Either of these is clear by considering the tessellation of H
by translates of the fundamental domain Fj for the action of SL2(Z), since
the only zero of j in Fj is at ζ6.

For k > 1, note that

Re(r1z + s1,k) = Re(r1z + s1,1) + Re(s1,k − s1,1) = 1
2 + (s1,k − s1,1).

Since 0 ≤ s1,1 < s1,k < 1, we have that 1/2 < Re(r1z + s1,k) < 3/2.
Therefore, j(r1z + s1,k) 6= 0 by the first fact, since Im(r1z + s1,k) =

√
3/2.

Now for i > 1,

Im(riz + si,k) = ri Im(z) = ri
1
r1

√
3

2 >

√
3

2
since ri > r1 for i > 1. Therefore, by the second fact, j(riz + si,k) 6= 0 for
i > 1. Hence, j(riz + si,k) 6= 0 for (i, k) 6= (1, 1). �

Now we show how this method may be generalised to prove Theorem 1.5.
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Proof of Theorem 1.5. Let f : H→ C be a non-constant modular function.
So f is a rational function of j. Let g1, . . . , gn ∈ GL+

2 (Q), and suppose
that f(g1z), . . . , f(gnz) are pairwise distinct. In particular, the associated
cosets [gi] ∈ PSL2(Z)\PGL+

2 (Q) are pairwise distinct, and so, as above,
we may rewrite the f(giz) as f(riz + si,k) for ri, si,k ∈ Q with ri > 0 and
0 ≤ si,k < 1. These linear functionals riz + si,k are again pairwise distinct
and we may assume r1 < r2 < · · · < rl and si,k < si,k′ for k < k′.

The function f is meromorphic on H. To prove the multiplicative inde-
pendence modulo constants of the functions f(riz+ si,k), it will be enough
to find z ∈ H such that riz + si,k is either a zero or a pole of f if and
only if (i, k) = (1, 1). Since f is a rational function of j, and j|Fj : Fj → C
is bijective, the function f has only finitely many zeros and poles in Fj .
Further, f has at least one zero or pole in Fj since f is non-constant.

Enumerate the zeros and poles of f in Fj as w1, . . . , wr, where Im(wi) ≤
Im(wi+1). We may then proceed for f as we did in the above proof for j,
replacing ζ6 by wr, provided that

(1) wr + s is neither a zero nor a pole of f for all 0 < s < 1, and
(2) f has no zero or pole with imaginary part > Im(wr).

The first of these is just the divisor condition. For the second, note that
if f has a zero or pole in H with imaginary part > Im(wr), then f must
have a zero or pole in Fj with imaginary part > Im(wr), as may be seen by
considering the tessellation of H by SL2(Z)-translates of Fj . This cannot
happen by the definition of wr, and so we are done. �

Remark 2.1. Suppose f is a non-constant modular function which does
not satisfy the divisor condition. Let g1, . . . , gn ∈ GL+

2 (Q) be such that
the functions f(g1z), . . . , f(gnz) are pairwise distinct. For such gi suitably
generic, there will still exist some z ∈ H such that giz is either a zero or a
pole of f for exactly one i. Thus the translates f(g1z), . . . , f(gnz) would still
be multiplicatively independent modulo constants. The divisor condition is
sufficient for this to be true for all possible choices of the gi, and hence
sufficient to establish Theorem 1.5, but is not obviously necessary. Indeed,
there does not appear to be an obvious obstruction to a corresponding func-
tional independence result holding for an arbitrary non-constant modular
function. It seems likely that there is a weaker condition which would still
suffice to prove Theorem 1.5.

3. Borcherds products for modular functions

In this section, we show that the divisor condition is satisfied by the non-
constant elements of a natural class of modular functions, which arises as
the set of Borcherds lifts of certain weakly holomorphic modular forms. We
thereby establish multiplicative independence for non-constant functions
belonging to this set. We introduce the following notation, after [8].
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Let A be the set of weakly holomorphic modular forms f of weight 1/2
on Γ0(4) which have a Fourier series of the form f(z) =

∑
c(n)qn, where

c(n) ∈ Z are such that c(n) = 0 unless n ≡ 0, 1 mod 4. (Weakly holomorphic
means that we allow f possibly to have poles at the cusps.) It is clear that
the elements of the set A form an additive group.

Let B be the set of integer weight meromorphic modular forms for some
character of SL2(Z), all of whose zeros and poles are located at either cusps
or imaginary quadratic numbers, and that have Fourier expansions with
integer coefficients and leading coefficient 1. The elements of B form a
multiplicative group.

Denote by H(n) the Hurwitz class number of discriminant −n when
n > 0 and set H(0) = −1/12. Then let the function H̃ be defined by

H̃(z) =
∑
n≥0

H(n)qn = − 1
12 + q3

3 + q4

2 + q7 + . . . .

Borcherds established the following isomorphism.

Theorem 3.1. [9, Theorem 14.1] Let Ψ: A→ B be given by

f(z) =
∑

a(n)qn 7→ Ψ(f(z)) = q−h
∏
n>0

(1− qn)a(n2),

where h is the constant coefficient in the Fourier series of f(z)H̃(z). Then
Ψ is an isomorphism from the additive group A to the multiplicative group
B. Further, the weight of the meromorphic modular form Ψ(f) is equal to
a(0), and the multiplicity of the zero of Ψ(f) at an imaginary quadratic
number τ ∈ H of discriminant ∆ is equal to∑

n>0
a(n2∆).

Here the discriminant ∆ of an imaginary quadratic number τ is defined as
∆ = b2− 4ac, where a, b, c ∈ Z satisfy aτ2 + bτ + c = 0 and gcd(a, b, c) = 1.

A modular function is a weight 0 meromorphic modular form for the triv-
ial character of SL2(Z). The modular functions in B clearly form a subgroup
of the group B, which we denote B0. Applying Borcherds’s isomorphism,
we have that B0 ⊂ Ψ(A0), where A0 is the subgroup of A comprising those
functions f ∈ A which have a Fourier expansion f(z) =

∑
af (n)qn with

af (0) = 0.
In this section, we prove the following theorem.

Theorem 3.2. Let f ∈ B0 be non-constant and g1, . . . , gn ∈ GL+
2 (Q). Sup-

pose that the functions f(g1z), . . . , f(gnz) are pairwise distinct. Then the
functions f(g1z), . . . , f(gnz) are multiplicatively independent modulo con-
stants.
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This theorem will follow from Theorem 1.5 once we show that non-
constant functions f ∈ B0 satisfy the divisor condition. To do this, we
consider a basis for the (free abelian) group A. The group A has a basis

{fd(z) : d ≥ 0 and d ≡ 0, 3 mod 4},

where fd is the unique element of A with a Fourier expansion of the form

fd(z) = q−d +
∑
D>0

A(d,D)qD.

See, for example, [21, Chapter 4], where the first few such functions are
listed. The isomorphism of Theorem 3.1 then tells us that the functions
Ψ(fd) form a basis for the group B. Recall that the weight of an element
Ψ(f) ∈ B is equal to the constant coefficient af (0) in the Fourier expansion
of f =

∑
af (n)qn ∈ A. The subgroup B0 of modular functions in B is

therefore contained in Ψ(A0), which has a basis given by

{Ψ(fd) : d > 0 and d ≡ 0, 3 mod 4}.

Lemma 3.3. Let d > 0 satisfy d ≡ 0, 3 mod 4. Then there exists a simple
zero τ∗ ∈ Fj of Ψ(fd) with the property that, for every τ ∈ Fj \ {τ∗}
which is either a zero or a pole of Ψ(fd), one has that Im(τ) < Im(τ∗). Let
αd = Im(τ∗). The resulting sequence {αd : d > 0, d ≡ 0, 3 mod 4} is strictly
increasing in d.

Proof. Write A(d, n) for the Fourier coefficients of fd, so that

fd(z) =
∑
n∈Z

A(d, n)qn.

Then, in particular, A(d,−d) = 1 and A(d, n) = 0 for all n < 0, n 6=
−d. By Theorem 3.1 all the zeros and poles of Ψ(fd) in Fj are located at
imaginary quadratic numbers in Fj . Further, the multiplicity of the zero or
pole of Ψ(fd) at an imaginary quadratic number τ ∈ Fj of discriminant ∆
is equal to ∑

n>0
A(d, n2∆).

In particular, this is equal to zero if ∆ < −d and equal to 1 if ∆ = −d.
Hence, Ψ(fd) has a simple zero at each imaginary quadratic number in Fj
of discriminant −d. Further, all zeros and poles of Ψ(fd) in Fj are contained
in the set

{τ ∈ Fj : τ is imaginary quadratic of discriminant ∆ with |∆| ≤ d}.

The quadratic imaginary numbers in Fj of a given discriminant ∆ can
be explicitly described. Each corresponds to the unique (in H) solution
to an equation az2 − bz + c = 0, where a, b, c ∈ Z satisfy ∆ = b2 − 4ac,
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gcd(a, b, c) = 1, and either −a < b ≤ a < c or 0 ≤ b ≤ a = c. The imaginary
quadratic τ corresponding to such a triple (a, b, c) is

τ = b+
√

∆
2a ,

so Im(τ) = |∆|1/2/2a.
For each discriminant ∆ < 0, there exists a unique such triple (a, b, c)

with a = 1. See [5, Proposition 2.6]. Write τ∆ for the element of Fj cor-
responding to this triple. Then τ∆ is a simple zero of Ψ(f−∆). Now let
τ ∈ Fj \ {τ∆} be either a zero or a pole of f−∆. Then τ is an imagi-
nary quadratic number of discriminant ∆′, where |∆′| ≤ |∆|. Then clearly
Im(τ∆) > Im(τ). So for d > 0 satisfying d ≡ 0, 3 mod 4, let ∆ = −d and
take τ∗ = τ∆. This proves the first part of the lemma, and the second part
then follows immediately. �

Now we come to the proof of Theorem 3.2.

Proof of Theorem 3.2. Let f ∈ B0 be non-constant. By Theorem 1.5, it
suffices to show that f satisfies the divisor condition. Since f is not the
identity element of B0, there are 0 < d1 < · · · < dk, satisfying di ≡ 0, 3 mod
4, and a1, . . . , ak ∈ Z \ {0} such that

f = Ψ(fd1)a1 . . .Ψ(fdk
)ak .

Therefore,

{zeros and poles of f} ⊂
k⋃
i=1
{zeros and poles of Ψ(fdi

)}.

By Lemma 3.3, there is a simple zero τ∗ of Ψ(fdk
) which is the unique

zero/pole in Fj of maximum imaginary part for Ψ(fdk
). Further τ∗ has

imaginary part greater than that of every zero or pole in Fj of a function
Ψ(fdi

), for i < k. Since ak 6= 0, the function f therefore has a unique
zero/pole (depending on the sign of ak) in Fj of maximum imaginary part.

Enumerate the zeros and poles of f in Fj as w1, . . . , wr, where Im(wi) ≤
Im(wi+1). We then have that wr = τ∗. By the previous paragraph and
Remark 1.4, f satisfies the divisor condition if Im(τ∗) ≥ 1, which is true
whenever dk ≥ 4.

If dk = 3, then f = Ψ(f3)a for some a ∈ Z \ {0}. Thus f = ja/3 since
j = Ψ(f3)3 by [9, §14, Example 2]. Hence the divisor condition holds for f
since it holds for j, as was shown already in the proof of Theorem 1.2 in
Section 2. Hence, for all dk, the divisor condition holds for f , and so we are
done. �

Remark 3.4. If f is a modular function with rational Fourier coefficients,
then f ∈ Q(j), see e.g. [12, Proposition 12.7]. So in particular f ∈ Q(j)
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for all those functions covered by Theorem 3.2. Therefore the additional
hypothesis in Theorem 1.7 that f ∈ Q(j) is not in fact a further restriction
in this case. (On the other hand, the divisor condition alone does not imply
that f ∈ Q(j), so in the fully general case Theorem 1.7 does impose an
additional restriction on f .)

4. The mixed Shimura variety setting

The Diophantine problems we consider in Sections 5–8 may naturally be
formulated as questions about a mixed Shimura variety. In this section, we
introduce this setting, which we will use in the sequel. In particular, we
formulate the Ax–Schanuel-type statements which will be required in the
proofs of Theorems 1.6 and 1.7. By an Ax–Schanuel statement we mean a
functional transcendence result that has a similar form to Ax’s theorem for
the exponential function [3].

Denote by Y (1) the modular curve SL2(Z)\H, which we identify with C
by means of the j-function, and by Gm = Gm(C) the multiplicative group
of complex numbers. Let X = Xm,n = Y (1)m×Gn

m, U = Um,n = Hm×Cn,
and π : U → X be given by

π(z1, . . . , zm, u1, . . . , un) = (j(z1), . . . , j(zm), exp(u1), . . . , exp(un)).

Then X is a mixed Shimura variety, uniformised by the map π : U → X.
We require the following definitions.

Definition 4.1.
(1) A weakly special subvariety of Gn

m is a subvariety defined by a
finite system of equations

∏
x
aij

i = cj ∈ Gm, where the aij ∈ Z are
such that the lattice generated by (a1j , . . . , anj) is primitive. It is a
special subvariety if every cj is a root of unity.

(2) A weakly special subvariety of Hm is a complex-analytically irre-
ducible component of the intersection with Hm of a subvariety of
Cm defined by a collection of equations of the form xi = gxj for
g ∈ GL+

2 (Q) and xk = c for c ∈ H constant. It is a special subvariety
if every constant coordinate c is a quadratic imaginary number.

(3) A weakly special subvariety of Y (1)m is the image under j of a
weakly special subvariety of Hm. It is a special subvariety if in
addition every constant coordinate is a j-special point.

(4) A (weakly) special subvariety of X is a product M ×T , where M is
a (weakly) special subvariety of Y (1)m and T is a (weakly) special
subvariety of Gn

m.
(5) An algebraic subvariety of U is a complex-analytically irreducible

component of Y ∩U , where Y ⊂ Cm×Cn is an algebraic subvariety.
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(6) A (weakly) special subvariety of U is a complex-analytically irre-
ducible component of π−1(W ), where W is a (weakly) special sub-
variety of X.

Remark 4.2. The weakly special subvarieties of Y (1)m are, equivalently,
those subvarieties of Y (1)m which may be defined by equations of the form
ΦN (xi, xk) = 0 and xl = c for c ∈ C constant. Here ΦN denotes the Nth
classical modular polynomial. For a proof of this equivalence, see [4, §2].

The Ax–Schanuel result we need is due to Pila and Tsimerman [26].

Theorem 4.3 ([26, Theorem 3.2]). Let V ⊂ X and W ⊂ U be algebraic
subvarieties and A ⊂ W ∩ π−1(V ) a complex-analytically irreducible com-
ponent. Then

dimA = dimV + dimW − dimX,

unless A is contained in a proper weakly special subvariety of U .

This is an Ax–Schanuel result of “mixed” type and follows from the
corresponding results in the two extreme cases: for the functions exp: Cn →
Gn

m and j : Hm → Y (1)m. (Recall that, by an abuse of notation, we write
exp and j for arbitrary Cartesian products of the maps exp: C → Gm,
j : H → C.) For exp: Cn → Gn

m, the necessary result follows from Ax’s
theorem [3]. For the case of j : Hm → Y (1)m, the result is proved in [25].

From Theorem 4.3, one may deduce the following Ax–Schanuel state-
ment.

Theorem 4.4 ([26, Theorem 3.3]). Let U ′ ⊂ U be a weakly special subva-
riety and X ′ = π(U ′). Let V ⊂ X ′,W ⊂ U ′ be algebraic subvarieties, and
let A ⊂W ∩π−1(V ) be a complex-analytically irreducible component. Then

dimA = dimV + dimW − dimX ′,

unless A is contained in a proper weakly special subvariety of U ′.

This statement may itself be equivalently formulated in terms of so-
called optimal varieties, see [18, Section 5]. We need the following definitions
from [18].

Definition 4.5. Fix a subvariety V ⊂ X.
(1) A component (with respect to V ) is a complex-analytically irre-

ducible component of W ∩ π−1(V ) for some algebraic subvariety
W ⊂ U .

(2) The defect δ(A) of such a component A is δ(A) = dim Zcl(A) −
dimA, where Zcl(A) denotes the Zariski-closure of A.

(3) A component A is called optimal if there is no strictly larger com-
ponent A′ ) A with δ(A′) ≤ δ(A).
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(4) A component A is called geodesic if the algebraic subvariety W =
Zcl(A) ⊂ U in the definition of a component may be taken to be a
weakly special subvariety.

Theorem 4.4 is then equivalent ([18, Section 5]) to the following.

Theorem 4.6 ([26, Proposition 3.5]). Let V ⊂ X be a subvariety. Let A
be a component with respect to V . If A is optimal, then A is geodesic.

We conclude this section with the definition of an atypical component of
a subvariety V of the mixed Shimura variety X. We will need this definition
in Sections 6 and 8 when we relate our results to the Zilber–Pink conjecture.

Definition 4.7. Let V ⊂ X be a subvariety. A subvariety A ⊂ V is called
an atypical component of V in X if there is a special subvariety T ⊂ X
such that A ⊂ V ∩ T and

dimA > dimV + dimT − dimX.

Remark 4.8. Usually the ambient mixed Shimura variety X will be clear
from context, and so we will just refer to atypical components of V .

5. Finiteness of multiplicatively dependent tuples

We now prove Theorem 1.6. Our proof will be in two stages. First we
will prove the theorem for the case of modular functions f ∈ Q(j) via
an o-minimal counting argument. We then extend the result to modular
functions f ∈ C(j).

For the first step, we prove the conditional result Proposition 5.2, which
covers multiplicatively dependent f -special points for a modular function
f ∈ Q(j) (which does not necessarily satisfy the divisor condition). This
result is conditional on a functional independence statement for distinct
GL+

2 (Q)-translates of f , which we formulate below as Condition 5.1. The-
orem 1.5 establishes this statement for modular functions satisfying the
divisor condition. We may therefore deduce Proposition 5.3, which is The-
orem 1.6 for functions f ∈ Q(j).

We adopt this approach in order to emphasise that, for the case of f ∈
Q(j), our proof of Theorem 1.6 does not depend on any particular facts
about the divisor condition. As we mentioned in Remark 2.1, it may be
possible to establish Condition 5.1 under a weaker hypothesis than the
divisor condition. If one could do this, then Proposition 5.2 shows that, for
f ∈ Q(j), Theorem 1.6 would hold under this weaker hypothesis.

Condition 5.1. Let f : H→ C be a non-constant modular function. If the
functions f(g1z), . . . , f(gnz) are pairwise distinct for g1, . . . , gn ∈ GL+

2 (Q),
then they are multiplicatively independent modulo constants.
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Proposition 5.2. Let f : H→ C be a non-constant modular function such
that f ∈ Q(j). Suppose that f satisfies Condition 5.1. Let n ≥ 1. Then there
exist only finitely many n-tuples (σ1, . . . , σn) of distinct f -special points
such that the set {σ1, . . . , σn} is multiplicatively dependent, but no proper
subset of {σ1, . . . , σn} is multiplicatively dependent.

Proposition 5.3. Let f : H→ C be a non-constant modular function such
that f ∈ Q(j). Suppose that f satisfies the divisor condition. Let n ≥ 1.
Then there exist only finitely many n-tuples (σ1, . . . , σn) of distinct f -special
points such that the set {σ1, . . . , σn} is multiplicatively dependent, but no
proper subset of {σ1, . . . , σn} is multiplicatively dependent.

Proof of Proposition 5.3. Let f be a non-constant modular function satis-
fying the divisor condition. Then Condition 5.1 holds for f by Theorem 1.5.
Proposition 5.3 thus follows from Proposition 5.2. �

Now we come to the proof of Proposition 5.2. We collect first those
arithmetic estimates on f -special points which we will require.

5.1. Arithmetic estimates. Let f : H → C be a non-constant modular
function such that f ∈ Q(j). Then f(z) = R(j(z)) for some rational func-
tion R with algebraic coefficients. Let σ be an f -special point. So σ = f(τ)
for some τ ∈ H with [Q(τ) : Q] = 2. Observe that the function f is
SL2(Z)-invariant, the restricted function j|Fj : Fj → C is injective, and the
(non-constant) rational map R : C → C is finite-to-one on its domain of
definition. Thus there exist τ1, . . . , τk ∈ Fj , with k ≥ 1 and [Q(τi) : Q] = 2
for every i, with the property that, for every τ ∈ Fj with [Q(τ) : Q] = 2,
one has f(τ) = σ if and only if τ ∈ {τ1, . . . , τk}. The discriminant ∆(τi) of
the quadratic number τi is defined as ∆(τi) = b2 − 4ac, where a, b, c ∈ Z
are such that aτ2

i + bτi + c = 0 and gcd(a, b, c) = 1. (Note in particu-
lar that ∆(τi) < 0 for every τi.) We then define the discriminant ∆(σ) of
the f -special point σ by ∆(σ) = min{∆(τ1), . . . ,∆(τk)}. Observe that the
discriminant of the j-special point j(τi) is equal to ∆(τi).

Write H(α) for the absolute Weil height of an algebraic number α,
and h(α) = logH(α) for the absolute logarithmic Weil height. For α =
(α1, . . . , αn) ∈ Qn, we define

H(α) = max{H(αi) : i = 1, . . . , n}
and

h(α) = max{h(αi) : i = 1, . . . , n}.
In the remainder of this paper, references to “the height” of α will mean
H(α); we will refer to h(α) as the logarithmic height. In this subsection,
constants will be positive and with only the indicated dependencies, but in
general not effective. Let K be a number field containing the coefficients of
R. The arithmetic estimates we need are the following.
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Lemma 5.4. For all ε > 0, there exists a constant c(ε, f) such that h(σ) ≤
c(ε, f)|∆|ε for every f -special point σ of discriminant ∆.

Proof. Fix ε > 0. Let τ0 ∈ Fj be such that σ = f(τ0) and [Q(τ0) : Q] = 2.
Note that |∆(τ0)| ≤ |∆|. There exists [26, (5.4)] a constant c(ε) such that

h(j(τ0)) ≤ c(ε)|∆(τ0)|ε.
Recall that σ = R(j(τ0)), where R is a rational function defined over K.
The result then follows thanks to elementary properties of the logarithmic
height:

h(xy) ≤ h(x) + h(y) for x, y ∈ Q,
h(x1 + · · ·+ xr) ≤ h(x1) + · · ·+ h(xr) + log r for x1 . . . , xr ∈ Q,

h(xr) = |r|h(x) for r ∈ Q, x ∈ Q×,

see e.g. [6, Chapter 1]. �

Lemma 5.5. Let σ be an f -special point of discriminant ∆ and suppose
σ = f(τ0) for τ0 ∈ Fj such that [Q(τ0) : Q] = 2. Then H(τ0) ≤ 2|∆|.

Proof. This follows immediately from [26, (5.5)]. �

Lemma 5.6. For any ε > 0 there exist constants c1(ε, f), c2(ε, f) such that

c1(ε, f)|∆|
1
2−ε ≤ [Q(σ) : Q] ≤ c2(ε, f)|∆|

1
2 +ε

for all f -special points σ of discriminant ∆. Hence, there are also constants
c′1(ε, f), c′2(ε, f) such that

c′1(ε, f)|∆|
1
2−ε ≤ [K(σ) : K] ≤ c′2(ε, f)|∆|

1
2 +ε.

Proof. Fix ε > 0. There exists c(ε) such that

c(ε)|∆(τ)|
1
2−ε ≤ [Q(j(τ)) : Q] ≤ c(ε)|∆(τ)|

1
2 +ε,

for every τ ∈ H with [Q(τ) : Q] = 2, see [26, (5.6), (5.7)]. We will show
that there exists a constant M(f) > 0 such that

(5.1) 1
M(f) [Q(j(τ)) : Q] ≤ [Q(f(τ)) : Q] ≤M(f)[Q(j(τ)) : Q]

holds for all τ ∈ H with [Q(τ) : Q] = 2. The first part of the lemma then
follows by combining these two inequalities, each applied to some τ1 ∈ Fj
with the property that σ = f(τ1), [Q(τ1) : Q] = 2, and ∆(τ1) = ∆.

For f ∈ Q(j) non-constant, the necessary inequality (5.1) was proved by
Spence in [29] (which treats actually the broader case f ∈ Q(j, χ∗), where
χ∗ is a certain almost holomorphic modular function). The extension to
f ∈ Q(j) was given by Spence in private communication with the author;
we include a proof below.
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Let d = [K : Q] and take τ ∈ H with [Q(τ) : Q] = 2. For the upper
bound, observe that

[Q(f(τ)) : Q] ≤ [K(j(τ)) : Q]
= [K(j(τ)) : Q(j(τ))][Q(j(τ)) : Q]
≤ d · [Q(j(τ)) : Q].

Now for the lower bound. Suppose that [Q(j(τ), f(τ)) : Q(f(τ))] > M
for some M . Then

[K(j(τ), f(τ)) : K(f(τ))][K(f(τ)) : Q(f(τ))]
= [K(j(τ), f(τ)) : Q(f(τ))]
= [K(j(τ), f(τ)) : Q(j(τ), f(τ))][Q(j(τ), f(τ)) : Q(f(τ))]
> [K(j(τ), f(τ)) : Q(j(τ), f(τ))] ·M.

Hence, using that K(j(τ)) = K(j(τ), f(τ)) since f(τ) is K-rational in j(τ),
we have that

[K(j(τ)) : K(f(τ))] > [K(j(τ), f(τ)) : Q(j(τ), f(τ))]
[K(f(τ)) : Q(f(τ))] ·M ≥ M

d
.

Taking Galois conjugates of j(τ) over K(f(τ)), we then obtain at least
M/d distinct quadratic points τ ′ in the standard fundamental domain Fj
with f(τ ′) = f(τ). For suitably large M though, this is impossible since f
is meromorphic and, restricted to Fj , definable in the o-minimal structure
Ran,exp, so uniform finiteness applies (see e.g. [13, Chapter 3]).

For M large enough (depending on f), we therefore have that

[Q(j(τ), f(τ)) : Q(f(τ))] ≤M.

Fix such an M . Then [Q(j(τ), f(τ)) : Q] ≤M · [Q(f(τ)) : Q], and so

[Q(f(τ)) : Q] ≥ 1
M

[Q(j(τ), f(τ)) : Q] ≥ 1
M

[Q(j(τ)) : Q].

Therefore, taking M(f) = max{M,d} completes the proof of (5.1).
For the second part of the lemma, the upper bound follows since

[K(σ) : K] ≤ [Q(σ) : Q],

while the lower bound comes from the fact that

[K(σ) : K][K : Q] = [K(σ) : Q] ≥ [Q(σ) : Q],

and thus
[K(σ) : K] ≥ 1

d
[Q(σ) : Q]. �
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Lemma 5.7. Let α1, . . . , αn be multiplicatively dependent non-zero ele-
ments of a number field L of degree d ≥ 2. Suppose that any proper subset
of the αi is multiplicatively independent. Then there exists a constant c(n)
and b1, . . . , bn ∈ Z, not all zero, such that αb1

1 . . . αbn
n = 1 and

|bi| ≤ c(n)dn log d
n∏
j=1
j 6=i

h(αj), i = 1, . . . , n.

Proof. See [20, Corollary 3.2] for the case n ≥ 2. If n = 1, then α1 is a root
of unity of degree ≤ d, and hence the desired result follows from elementary
bounds for the Euler φ-function. �

5.2. Conjugates of f-special points. Write T∆ for the set of integer
triples (a, b, c) such that: gcd(a, b, c) = 1, ∆ = b2 − 4ac, and either −a <
b ≤ a < c or 0 ≤ b ≤ a = c. Then there is a bijection between T∆ and the
j-special points of discriminant ∆ given by (a, b, c) 7→ j((b+

√
∆)/2a). The

j-special points of discriminant ∆ form a full Galois orbit over Q. See for
example [5, §2.2].

Lemma 5.8. Let K be a number field, R ∈ K(t) a non-constant rational
function, and f : H → C the modular function defined by f(z) = R(j(z)).
Let σ be an f -special point of discriminant ∆. Then the set{

f

(
b+
√

∆
2a

)
: (a, b, c) ∈ T∆

}
contains all K-conjugates of σ, which are also f -special points of discrim-
inant ∆.

Proof. We may write σ = R(j), where j is a j-special point of discriminant
∆. Let σ′ be a K-conjugate of σ. Since R is a rational function over K,
one has that σ′ = R(j′) where j′ is a K-conjugate of j. But we have
a complete description of the conjugates of j, they arise as the j-special
points j((b +

√
∆)/2a) for (a, b, c) ∈ T∆. So σ′ is f -special and belongs to

the set in the lemma.
It remains to show that the discriminant of the f -special point σ′ is equal

to ∆. Since σ′ = R(j′) and j′ is a j-special point of discriminant ∆, this
will be true unless σ′ = R(j0) for some j-special point j0 of discriminant
∆0 < ∆. If this were to happen, then one would have that σ = R(j′0) for
some K-conjugate j′0 of j0 since σ, σ′ are K-conjugate. But j′0 would be a
j-special point of discriminant ∆0, and so the discriminant of σ would have
to be ≤ ∆0, implying that ∆ ≤ ∆0 < ∆, a contradiction. �

The proof of Proposition 5.2 will be by an o-minimal counting argu-
ment. We first establish a lower bound for the number of multiplicatively
dependent tuples of f -special points of a given discriminant. We will then



Multiplicative independence of modular functions 475

apply the Pila–Wilkie o-minimal Counting Theorem [27] (and in particular
its extension to algebraic points [22]) to count the preimages of such tu-
ples. The lower bound we use comes from a lower bound for the size of the
Galois orbit of an f -special point. We will thus require that conjugates of
f -special points are again f -special. This is why the o-minimal argument
in Subsection 5.3 treats only the case of f ∈ Q(j).

5.3. Proof of Proposition 5.2. Let f : H→ C be a non-constant modu-
lar function such that Condition 5.1 holds for f . Suppose also that f ∈ Q(j),
so that f(z) = R(j(z)) for some rational function R ∈ Q(t). Let K be a
number field containing the coefficients of R. Fix n ≥ 1. Let X = Xn,n =
Y (1)n ×Gn

m and

V = {(x1, . . . , xn, t1, . . . , tn) ∈ X : ti = R(xi) for i = 1, . . . , n} ⊂ X.

Then dimV = codimV = n. Recall the definition of a (weakly) special
subvariety of X from Section 4. The proof of Proposition 5.2 is similar to
the proof of [26, Theorem 1.2].

Proof of Proposition 5.2. In the following, constants c, c′ are positive and
depend only on our choice of f and n, but will vary between occurrences.

The complexity ∆(σ) of an n-tuple σ = (σ1, . . . , σn) of f -special points is
defined to be max{|∆(σ1)|, . . . , |∆(σn)|}. We define an f -dependent tuple
to be an n-tuple σ = (σ1, . . . , σn) of distinct f -special points satisfying a
non-trivial multiplicative relation and minimal for this property.

Let Fj denote the standard fundamental domain for the action of SL2(Z)
on H, which we defined in Section 1, and let Fexp denote the standard
fundamental domain for the action of 2πiZ on C given by Fexp = {z ∈ C :
0 ≤ Im z < 2π}. Let

Y =
{

(z, u, r, s) ∈ Fnj × Fnexp × Rn × R : R(j(z)) = exp(u), r · u = 2πis
}

and
Z =

{
(z, r, s) ∈ Fnj × Rn × R : ∃ u(z, u, r, s) ∈ Y }.

Then (j(z), exp(u)) ∈ V for (z, u, r, s) ∈ Y , and the sets Y, Z are definable
in the o-minimal structure Ran,exp.

An f -dependent tuple σ = (σ1, . . . , σn) of complexity ∆ gives rise to
a point (x1, . . . , xn, σ1, . . . , σn) ∈ V , where each xi is a j-special point of
discriminant ∆(σi) satisfying R(xi) = σi. This point in V has a preimage

τ = (z1, . . . , zn, u1, . . . , un) ∈ Fnj × Fnexp.

Now τ gives rise to the point

(z1, . . . , zn, u1, . . . , un, b1, . . . , bn, b) ∈ Y,
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where the bi, b are rational integers recording the multiplicative dependence
of σ1, . . . , σn, i.e. such that

n∑
i=1

biui = 2πib.

Since xi is a j-special point of discriminant ∆(σi), so zi is a quadratic
point with height bounded by 2|∆(σi)| by Lemma 5.5. The σi are f -special
points of discriminants ∆(σi) such that the set {σ1, . . . , σn} is multiplica-
tively dependent and minimal for this property. We may therefore use the
bounds on the logarithmic height (Lemma 5.4) and degree (Lemma 5.6) of
the σi, together with the result in Lemma 5.7, to see that the integers bi
may be chosen to have absolute value bounded by c∆n2 . Since

n∑
i=1

biui = 2πib

and 0 ≤ Im(ui) < 2π, we obtain also a bound on |b|. Thus, the height of
the point

(z1, . . . , zn, b1, . . . , bn, b) ∈ Z
is bounded by c∆n2 since H(k) = |k| for k ∈ Z \ {0}. Further, this point
is quadratic in the zi coordinates and rational (even integral) in the bi, b
coordinates.

Suppose then that there are infinitely many f -dependent tuples. Then,
in particular, there are f -dependent tuples of arbitrarily large complex-
ity ∆. Let σ be an f -dependent tuple of suitably large complexity ∆. By
Lemma 5.6, σ has at least c∆1/4 conjugates over K, and by Lemma 5.8
each of these conjugates σ′ is itself an f -dependent tuple of complexity ∆.
Further, all these conjugate tuples satisfy the same multiplicative relation.
Consequently, each of these σ′ gives rise to a point

(z′1, . . . , z′n, u′1, . . . , u′n, b1, . . . , bn, b′) ∈ Y,
which is quadratic in the z′i coordinates and rational (even integral) in
the bi, b′ coordinates. Note that the coordinates (b1, . . . , bn) are the same
for all these conjugates, while the coordinates (z′1, . . . , z′n) and (u′1, . . . , u′n)
must be distinct for distinct conjugates. Further, the height of each of the
corresponding points

(z′1, . . . , z′n, b1, . . . , bn, b′) ∈ Z

is bounded by c∆n2 .
We are now in a position to apply the o-minimal Counting Theorem in

the form of [18, Corollary 7.2]. View Y as a definable family parametrised
by Rn. Let Y(b1,...,bn) denote the fibre of Y over the point (b1, . . . , bn) ∈ Rn.
Let Σ ⊂ Y(b1,...,bn) denote the set of points of Y(b1,...,bn) arising from the
conjugates of σ. Let π1, π2 denote the projections of Y(b1,...,bn) to Fnj ×R and
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Fnexp respectively. Provided that ∆ is suitably large (which we may always
assume), we thereby obtain a continuous, definable function β : [0, 1] →
Y(b1,...,bn) such that:

(1) The composition π1 ◦ β : [0, 1] → Fnj × R is semialgebraic and its
restriction to (0, 1) is real analytic.

(2) The composition π2 ◦ β : [0, 1]→ Fnexp is non-constant.
(3) β(0) ∈ Σ.

(In [18, Corollary 7.2], it is only stated that π2(β(0)) ∈ π2(Σ), but in
fact the authors prove there that β(0) ∈ Σ.) Note also that (2) implies that
the composition of β with projection to the Fnj coordinates is non-constant.
Denote by Z(b1,...,bn) the fibre of Z over the point (b1, . . . , bn). Note that (π1◦
β)([0, 1]) ⊂ Z(b1,...,bn). There thus exists a continuous, semialgebraic map
γ : [0, 1]→ Z(b1,...,bn) which projects non-constantly to the Fnj coordinates,
maps 0 to a point of Z(b1,...,bn) corresponding to a conjugate of σ, and whose
restriction to (0, 1) is real analytic.

Let Φ: Z(b1,...,bn) → Hn × C be given by (z, s) 7→ (z, 2πis). Observe that
the set (Φ ◦ γ)([0, 1]) is contained in the set

Ṽ =
{

(z, t) ∈ Hn × C :
n∏
i=1

f(zi)bi = exp(t)
}
.

There then exists an open neighbourhood Ω ⊂ Hn×C of Φ(γ(0)) and a set
P such that:

(1) Ω ∩ (Φ ◦ γ)([0, 1]) ⊂ P ⊂ Ṽ
(2) P may be written as a finite union of irreducible Nash subsets of Ω

which each contain Φ(γ(0)).
This follows from [1, Proposition 1] and the characterisation of Nash sets
given in [1, p. 989].

If every complex-analytically irreducible component of P had constant
projection to itsHn coordinates, then (Φ◦γ)([0, 1]) would have constant pro-
jection to its Hn coordinates by real analytic continuation. But (Φ◦γ)([0, 1])
does not have constant projection to its Hn coordinates. Hence, there must
exist some complex-analytically irreducible component of P which has non-
constant projection to its Hn coordinates. Observe that every complex-
analytically irreducible component of P contains Φ(γ(0)). Hence, by com-
plex analytic continuation, there exists a complex algebraic subvarietyW ⊂
Cn+1 and a complex-analytically irreducible component A ⊂ (Hn×C)∩W
such that Φ(γ(0)) ∈ A ⊂ Ṽ and A has non-constant projection to its Hn

coordinates.
By the Ax–Schanuel results of Section 4, there exist weakly special subva-

rieties W1 ⊂ Hn and W2 ⊂ C such that A ⊂W1 ×W2 ⊂ Ṽ . The projection
Ṽ → Hn has discrete fibres, and hence W2 must just be a point, which
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therefore has to be equal to the projection of Φ(γ(0)). So W2 = {2πib′} for
some b′ ∈ Z.

Therefore, W1 is a positive-dimensional weakly special subvariety of Hn

which is contained in the set{
z ∈ Hn :

n∏
i=1

f(zi)bi = 1
}
.

In addition,W1 contains a pre-image (τ1, . . . , τn) ∈ Hn of some f -dependent
tuple (f(τ1), . . . , f(τn)). In particular, f(W1) has no two identically equal
coordinates, since the f(τi) are pairwise distinct. Note that all the bi are
non-zero, since the set {f(τ1), . . . , f(τn)} is minimally multiplicatively de-
pendent. Taking the image ofW1 under f , we therefore obtain a multiplica-
tive dependence modulo constants among some pairwise distinct GL+

2 (Q)-
translates of f . This contradicts Condition 5.1, and so we are done. �

5.4. Proof of Theorem 1.6. Theorem 1.6 follows from Proposition 5.3
by a specialisation argument. We will need the following elementary lemma.

Lemma 5.9. Let n ≥ 1. Suppose that x1, . . . , xn ∈ Gm are pairwise distinct
and such that

xa1
1 . . . xan

n = 1,
for some ai ∈ Z with a1 6= 0. Then there exists a set S ⊂ {x1, . . . , xn} such
that x1 ∈ S and S is minimally multiplicatively dependent.

Proof. We proceed by induction on n. If n = 1, then the result is trivial.
Now let n > 1. Suppose that x1, . . . , xn ∈ Gm are pairwise distinct and
such that

xa1
1 . . . xan

n = 1
for some ai ∈ Z with a1 6= 0. Suppose, for contradiction, that there is
no minimally multiplicatively dependent subset of {x1, . . . , xn} which con-
tains x1. Then, in particular, the set {x2, . . . , xn} must be multiplicatively
dependent. So

xb2
2 . . . xbn

n = 1
for some b2, . . . , bn ∈ Z not all zero. Without loss of generality, we assume
that b2 6= 0. We may then eliminate x2 from the first equality, to obtain
that

xa1b2
1 xa3b2−a2b3

3 . . . xanb2−a2bn
n = 1.

Note that a1b2 6= 0. Thus, by induction, there exists a set

S ⊂ {x1, x3, . . . , xn}

such that x1 ∈ S and S is minimally multiplicatively dependent. This gives
the desired contradiction. �
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Now we may proceed with the proof of Theorem 1.6. For the remainder of
this section, fix f ∈ C(j) to be a non-constant modular function satisfying
the divisor condition. Write f(z) = R(j(z)) for some rational function
R(t) ∈ C(t). We may assume that R(t) /∈ Q(t), else we would be in the case
of Proposition 5.3. There are N ≥ 1 and a = (a0, . . . , aN−1) ∈ CN such
that

R(t) = p(a, t)
q(a, t) ,

where

p(a, t) = a0

k∏
i=1

(t− ai)

and

q(a, t) =
N−1∏
i=k+1

(t− ai).

Note that at least one coordinate ai of a must be transcendental since we
have assumed that R(t) /∈ Q(t). We may also assume that the polynomials
p(a, t), q(a, t) ∈ C[t] are relatively prime in C[t].

For a′ ∈ CN , define fa′ : H→ C by

fa′(z) = p(a′, j(z))
q(a′, j(z)) .

So, in particular, f = fa. Note that, for every a′ ∈ CN , the function fa′

is a modular function. Clearly, if a′ ∈ QN , then fa′ ∈ Q(j). We need the
following fact about the divisor condition.

Lemma 5.10. Let W ⊂ CN be the smallest affine variety over Q such
that a ∈ W . Suppose the divisor condition holds for f . Then there exists
an open neighbourhood U of a such that, for every a′ ∈W ∩ U , the divisor
condition holds for the modular function fa′.

Proof. Let U be an open neighbourhood of a and take a′ = (a′0, . . . , a′N−1) ∈
U . Provided U is chosen suitably small, the divisor condition will hold for
the modular function fa′(z), unless possibly one of the following happens:

(1) ai = ak, but a′i 6= a′k for some i, k;
(2) ai ∈ {0, 1728} and a′i 6= ai for some i.

Both these possibilities are ruled out though if a′ ∈W . �

We now complete the proof of Theorem 1.6.

Proof of Theorem 1.6. Fix n ≥ 1. Let Y be the set of j-special points.
Let Z be the set of y = (y1, . . . , yn) ∈ Y n such that the f -special points
R(y1), . . . , R(yn) are pairwise distinct and the set {R(y1), . . . , R(yn)} is
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minimally multiplicatively dependent. We need to show that the set Z is fi-
nite. Suppose then, for contradiction, that Z is infinite. Then, in particular,
the set

Z̃ = {σ ∈ Y : ∃ y ∈ Z such that σ = πi(y) for some i = 1, . . . , n}

is infinite, where πi : Y n → Y denotes the projection map to the ith coor-
dinate.

If y = (y1, . . . , yn) ∈ Z, then there are m1, . . . ,mn ∈ Z \ {0} such that

p(a, y1)m1 . . . p(a, yn)mn = q(a, y1)m1 . . . q(a, yn)mn .

Multiplying by those factors with mi < 0, we get a corresponding polyno-
mial equality, which we denote (∗). (Note that the equality (∗) depends on
y, but is always of the same form.) In addition, one has that

(∗∗) p(a, yi) 6= 0 and q(a, yi) 6= 0 for i = 1, . . . , n

for all y ∈ Z. Since R(y1), . . . , R(yn) are pairwise distinct, one also has that

(∗∗∗) p(a, yi)q(a, yk)− p(a, yk)q(a, yi) 6= 0

for all 1 ≤ i < k ≤ n and y ∈ Z.
Let W ⊂ CN be the smallest affine variety over Q such that a ∈ W .

Let K ⊂ C be a number field over which W is defined. If dimW = 0,
then we immediately contradict Proposition 5.3. So we may assume that
dimW ≥ 1. Note that, by Lemma 5.10, there is some open neighbourhood
U ⊂ CN such that a ∈ U and, for every a′ ∈ U ∩W , the divisor condition
holds for the modular function fa′ .

Suppose now that dimW = 1. Given some y = (y1, . . . , yn) ∈ Z, a
condition p(x, yi) = 0 then defines a finite subset of W , of size at most
d say. Now yi is a j-special point, so is contained in a finite extension
of Q which is “dihedral” (see e.g. [15, p. 191]) and hence, in particular,
solvable. So any a′ satisfying the equation p(a′, yi) = 0 lies in an extension
of K which has an index ≤ d solvable subextension (and similarly for an
equation q(a′, yi) = 0 or an equation p(a′, yi)q(a′, yk)−p(a′, yk)q(a′, yi) = 0
where i 6= k).

Recall that a has at least one transcendental coordinate, say the first
coordinate. Let π1 : W → C be the projection map to the first coordinate.
Then π1 is an open mapping at a, so π1(W ∩ U) contains an open neigh-
bourhood U ′ ⊂ C such that π1(a) ∈ U ′. If we find α ∈ U ′ with Galois group
G (over K), then any a′ ∈ W ∩ U with π1(a′) = α will be algebraic and
have a Galois group which contains G as a subgroup.

Fix some b ∈ U ′∩K(i). Let c be any algebraic number whose Galois group
over K(i) is isomorphic to the alternating group Am (for some suitably
large m); such a c exists by [10, Corollary 12]. Fix some r ∈ Q with r > 0
and set α = b+rc. Provided r is chosen suitably small, we have that α ∈ U ′.
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The Galois group of α over K(i) is isomorphic to Am, and hence the Galois
group of α over K contains a subgroup isomorphic to Am.

Now fix an algebraic a′ ∈W ∩U with π1(a′) = α. Then the Galois group
of a′ over K contains a subgroup isomorphic to Am. In particular, for every
y = (y1, . . . , yn) ∈ Z, one has that

p(a′, yi)q(a′, yi) 6= 0

for all 1 ≤ i ≤ n and

p(a′, yi)q(a′, yk)− p(a′, yk)q(a′, yi) 6= 0

for all 1 ≤ i < k ≤ n. Note also that, for each y = (y1, . . . , yn) ∈ Z, the
respective dependence (∗) holds with a′ in place of a, since a′ ∈W .

Define the rational function Ra′ ∈ Q(t) by

Ra′(t) = p(a′, t)
q(a′, t) ,

so that fa′(z) = Ra′(j(z)). For each 1 ≤ k ≤ n, let Ak be the set of
y = (y1, . . . , yk) ∈ Y k such that the fa′-special points Ra′(y1), . . . , Ra′(yk)
are pairwise distinct and the set {Ra′(y1), . . . , Ra′(yk)} is minimally multi-
plicatively dependent. Then let

Ãk = {σ ∈ Y : ∃ y ∈ Ak such that σ = πi(y) for some i = 1, . . . , k},

where πi : Y k → Y is the projection map to the ith coordinate as usual.
Let y = (y1, . . . , yn) ∈ Z. By the above argument, Ra′(y1), . . . , Ra′(yn)

are pairwise distinct fa′-special points and

Ra′(y1)m1 . . . Ra′(yn)mn = 1,

for some m1, . . . ,mn ∈ Z \ {0}. The set {Ra′(y1), . . . , Ra′(yn)} is not neces-
sarily minimally multiplicatively dependent, but we may apply Lemma 5.9
since Ra′(y1), . . . , Ra′(yn) are pairwise distinct and m1, . . . ,mn 6= 0. We
deduce that, for each i = 1, . . . , n, there exists a minimally multiplicatively
dependent subset of {Ra′(y1), . . . , Ra′(yn)} which contains Ra′(yi). In par-
ticular, we see that

y1, . . . , yn ∈
n⋃
k=1

Ãk.

Consequently, Z̃ ⊂
⋃n
k=1 Ãk, and so the set

⋃n
k=1 Ãk must be infinite.

This though cannot happen. Since a′ ∈ U ∩ W , the divisor condition
holds for the modular function fa′ by Lemma 5.10. Also, fa′ ∈ Q(j) since
a′ is algebraic. Therefore, by Proposition 5.3, for each 1 ≤ k ≤ n, there
are only finitely many k-tuples (σ1, . . . , σk) of pairwise distinct fa′-special
points such that the set {σ1, . . . , σk} is minimally multiplicatively depen-
dent. Consequently, the sets A1, . . . , An must all be finite, since the rational
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function Ra′ is finite-to-one. So the sets Ã1, . . . , Ãn are all finite too. Thus,
the set

⋃n
k=1 Ãk is also finite, and this gives us the desired contradiction.

So we are left with the case where dimW > 1. For y ∈ Z, define Wy to
be the union of the set

{w ∈W : p(w, yi)q(w, yi) = 0 for some i = 1, . . . , n}

and the set

{w ∈W : p(w, yi)q(w, yk)− p(w, yk)q(w, yi) = 0 for some 1 ≤ i < k ≤ n}.

Then a /∈ Wy by (∗∗) and (∗∗∗), and so each Wy is a proper subvariety of
W . The polynomials p, q are of bounded degree, so all theWy have bounded
degree.

Let W ′ be an irreducible subvariety of W of codimension 1, defined over
Q, and of degree higher than any of theWy. By the theorem of Bertini, such
aW ′ arises as the intersection ofW with a sufficiently general hypersurface
H in CN of large enough degree, defined over Q. The subvariety W ′ is not
contained in any Wy. Given y ∈ Z, the corresponding equation (∗) holds
with any a′ ∈W ′ in place of a. For a generic a′ ∈W ′, the inequalities (∗∗)
and (∗∗∗) hold for every y ∈ Z. The union of all H∩W for H as in Bertini’s
theorem is a constructible, Zariski dense subset ofW , and therefore contains
a Zariski open subset of W . We may thus assume that H is such that
H ∩W ∩ U is non-empty and of codimension 1 in W ∩ U .

We now continue this process inductively. Eventually, we thereby obtain
a varietyW ∗ which is defined over Q, has dimension 1, and also satisfies the
following two conditions. First, for every y ∈ Z, the corresponding equation
(∗) holds with any a′ ∈ W ∗ in place of a. Second, for a generic a′ ∈ W ∗,
the inequalities (∗∗) and (∗∗∗) hold for every y ∈ Z. One thereby reduces
to the above dimension 1 case, and the proof is complete. �

Remark 5.11. Observe that the above proof depends crucially on the spe-
cific properties of the divisor condition which are embodied in Lemma 5.10.
This allows us to specialise to a modular function in Q(j) that also satis-
fies the divisor condition. In particular, one could not use the argument in
this section to prove a result corresponding to Proposition 5.2 for arbitrary
non-constant modular functions f ∈ C(j) satisfying Condition 5.1 (but not
necessarily the divisor condition).

We end this section by showing that the divisor condition is not necessary
for the n = 1 case of Theorem 1.6, i.e. the case of f -special points which
are also roots of unity. (Note it is well-known that no j-special point is a
root of unity, see e.g. [26, p. 1365].)

Proposition 5.12. Let f ∈ C(j) be non-constant. Then there are only
finitely many f -special points σ such that σ is also a root of unity.
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Proof. We treat first the algebraic case. Let f ∈ Q(j) be non-constant.
Then we may write f(z) = R(j(z)) for some rational function R with
algebraic coefficients. Suppose x is a j-special point such that R(x) is a
root of unity. By Kronecker’s theorem we have that h(R(x)) = 0. Viewing
the rational function R as a morphism P1 → P1 defined over Q, one may
use [19, Theorem B.2.5] to obtain that h(x) ≤ c, where c is a constant
depending only on R. Write ∆ for the discriminant of the j-special point
x. Then [16, Lemma 3] gives that

h(x) ≥ c1 log|∆| − c2,

for some absolute constants c1, c2 > 0. Putting these two inequalities to-
gether, we obtain that |∆| must be bounded above by a constant depending
only on R. There are thus only finitely many j-special points x such that
R(x) is a root of unity. Hence, there are only finitely many f -special points
which are also roots of unity.

Now let f(z) = R(j(z)) for an arbitrary non-constant rational function
R. Suppose that there are infinitely many f -special points which are also
roots of unity. Since j-special points are algebraic, there are then infinitely
many x ∈ Q such that R(x) ∈ Q. Hence R must be defined over Q, and so
we contradict the above algebraic case of the proposition. �

6. The Zilber–Pink conjecture

6.1. The Zilber–Pink setting. In this section, we consider how The-
orem 1.6 relates to the Zilber–Pink conjecture. Different versions of this
conjecture were formulated by Zilber [30], Pink [28], and Bombieri, Masser
and Zannier [7].

Let f ∈ C(j) be non-constant, so that f(z) = R(j(z)) for some non-
constant rational function R with coefficients in C. As in Section 4, for
n ≥ 1, let X = Xn,n = Y (1)n × Gn

m, U = Hn × Cn, and π : U → X be
given by

π(z1, . . . , zn, u1, . . . , un) = (j(z1), . . . , j(zn), exp(u1), . . . , exp(un)).
We define (weakly) special subvarieties of U,X as in Definition 4.1. Now,
as in Subsection 5.3, let
V = Vn = {(x1, . . . , xn, t1, . . . , tn) ∈ X : ti = R(xi) for i = 1, . . . , n} ⊂ X.
We refer to Definition 4.7 for the definition of an atypical component of V .
The version of the Zilber–Pink conjecture for V we adopt is the following.

Conjecture 6.1 (Zilber–Pink conjecture). There are only finitely many
maximal atypical components of V .

The full Zilber–Pink conjecture is the corresponding statement for an
arbitrary subvariety V of a mixed Shimura variety X. We restrict ourselves
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to considering the conjecture for a certain class of subvarieties V of the
mixed Shimura variety Y (1)n × Gn

m. We consider the conjecture when V
is (the Cartesian product of) the graph of a particular kind of function
φ : Y (1)→ Gm. When V is just the “diagonal” subvariety of X

V = {(x1, . . . , xn, t1, . . . , tn) ∈ X : xi = ti for i = 1, . . . , n},
then the Zilber–Pink conjecture in this setting was explored in [26]. In this
section, we extend these results to some cases where V is (the Cartesian
product of) the graph of a rational function R : Y (1) → Gm, rather than
just the identity map.

Problems of a related kind were also considered by Pila and Tsimer-
man [24]. They looked at the graph of a map φ : Y → E, where Y is a
modular or Shimura curve and E is an elliptic curve. Y × E is not itself a
mixed Shimura variety (unless E has CM), but it is a weakly special sub-
variety of a mixed Shimura variety. A version of the Zilber–Pink conjecture
may thus be formulated for the subvariety of Y n × En given by the graph
of φ.

The Zilber–Pink conjecture does not by itself imply the finiteness of
n-tuples of distinct f -special points that are multiplicatively dependent
and minimal for this property. To obtain this result from the Zilber–Pink
conjecture, one needs in addition the functional independence statement
Condition 5.1. This is required to prove that every such n-tuple leads to a
maximal atypical component of V .

Lemma 6.2. Let f ∈ C(j) be non-constant. Suppose that Condition 5.1
holds for f . An n-tuple σ = (σ1, . . . , σn) of distinct f -special points such
that the set {σ1, . . . , σn} is minimally multiplicatively dependent gives rise
to an atypical point σ̂ ∈ V which is not contained in any atypical component
of V of positive dimension.

Proof. The proof is similar to that of [26, Lemma 6.1]. Suppose σ =
(σ1, . . . , σn) is an n-tuple of distinct f -special points satisfying a non-
trivial multiplicative relation and minimal for this property. We may write
σi = R(xi) for xi a j-special point.

The point σ̂ = (x1, . . . , xn, σ1, . . . , σn) ∈ V lies in the intersection of V
with a special subvariety T of X of codimension n + 1. Here T is given
by fixing all the Y (1) coordinates and imposing the multiplicative relation
satisfied by the σi on the Gm coordinates. Hence, σ̂ is an atypical point of
V . We now show that σ̂ cannot be contained in an atypical component of
V of positive dimension.

If σ̂ were contained in a special subvariety of X defined by two
independent multiplicative conditions on the σi coordinates, then we could
eliminate one of these coordinates, contradicting the fact that the set
{σ1, . . . , σn} is minimally multiplicatively dependent.



Multiplicative independence of modular functions 485

A special subvariety M ×Gn
m, where M is a special subvariety of Y (1)n,

never intersects V atypically. Similarly, no special subvariety of the form
Y (1)n × T , where T is a special subvariety of Gn

m, intersects V atypically.
It thus remains to consider special subvarieties of the formM×T , where

M is a proper special subvariety of Y (1)n and T is a special subvariety of
Gn

m defined by one multiplicative condition. Then V ∩ (M × T ) is equal to
the set

{(u,R(u)) : u ∈M and R(u) ∈ T}.

This would typically have dimension dimM − 1. To be atypical, we would
thus require that R(M)∩Gn

m ⊂ T . Hence, if V ∩(M×T ) were also positive-
dimensional, then Condition 5.1 and the fact that no proper subset of
{σ1, . . . , σn} is multiplicatively dependent implies that R(M) must have
two identically equal coordinates. Since no non-constant modular function
is invariant under a larger subgroup of GL+

2 (Q) than Q× ·SL2(Z), one must
then have that M has two identically equal coordinates. But then the σi
cannot be pairwise distinct, a contradiction. �

As can be seen from the above proof, a multiplicatively dependent n-
tuple of f -special points always gives rise to an atypical component of V .
However, to show that the resulting atypical component is maximal, one
requires also that the points are distinct, the multiplicative dependence
is minimal, and f satisfies Condition 5.1. In such a case, one can then
rule out the possibility of there being any positive-dimensional atypical
component containing such tuples. It is because we can exclude the positive-
dimensional case that our Theorem 1.6 (and also [26, Theorem 1.2]) is a
stronger statement than [24, Theorem 1.1], where one cannot rule out this
case.

With Lemma 6.2, it is now easy to prove the following.

Proposition 6.3. Let f ∈ C(j) be non-constant. Suppose that Condi-
tion 5.1 and Conjecture 6.1 hold for f . Then, for each n ≥ 1, there are
only finitely many n-tuples (σ1, . . . , σn) of distinct f -special points such
that the set {σ1, . . . , σn} is multiplicatively dependent, but no proper subset
of {σ1, . . . , σn} is multiplicatively dependent.

Proof. Let σ = (σ1, . . . , σn) be an n-tuple of distinct f -special points sat-
isfying a non-trivial multiplicative relation and such that no proper subset
of {σ1, . . . , σn} is multiplicatively dependent. By Lemma 6.2 (the proof
of which requires only Condition 5.1), the tuple σ gives rise to a maximal
atypical component {σ̂} of V . Further, distinct tuples σ give rise to distinct
points σ̂. By Conjecture 6.1, there are only finitely many maximal atypical
components of V , and hence there are only finitely many such tuples σ. �
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Thus, for f ∈ C(j) non-constant and n ≥ 1, the finiteness of n-tuples
of pairwise distinct f -special points that are minimally multiplicatively de-
pendent would follow from Condition 5.1 and Conjecture 6.1 for f . Conjec-
ture 6.1 is not known in general though, and so we must prove the finiteness
statement directly, as we did in Section 5.

6.2. The Zilber–Pink conjecture for n ≤ 2. We are not able to prove
Conjecture 6.1 in general. We can though establish some partial results
for small n. The proofs require the results of Section 5. First, we show
that, for f ∈ C(j) non-constant, Conjecture 6.1 holds for n = 1 thanks to
Proposition 5.12.

Proposition 6.4. Let f ∈ C(j) be a non-constant modular function. Then
Conjecture 6.1 holds for n = 1.

Proof. Let n = 1, so that X = Y (1) × Gm and V = {(x, t) : t = R(x)},
where R ∈ C(t) such that f(z) = R(j(z)). The special subvarieties of X
are either X itself, or have one of the following forms:

Y (1)× {ζ}, {x} ×Gm, {x} × {ζ},

where x is a j-special point and ζ is a root of unity. Now V does not intersect
X atypically. Nor can V intersect atypically with varieties of form either
Y (1) × {ζ} (since R is non-constant) or {x} × Gm. So the only atypical
components of V arise when, for x a j-special point and ζ a root of unity,
the intersection

V ∩ ({x} × {ζ})
is non-empty. This happens just when ζ = R(x), in which case ζ is both
f -special and a root of unity. So it is enough to establish the finiteness
of points that are both f -special and a root of unity. This though is just
Proposition 5.12. �

Now we come to the n = 2 case. So, for the remainder of this section,X =
X2,2 and V = V2 ⊂ X. We make the following definitions for convenience.

Definition 6.5. Let f ∈ C(j) be non-constant. We say that f satisfies the
finiteness condition for pairs if there are only finitely many 2-tuples (σ1, σ2)
of distinct f -special points σi such that the set {σ1, σ2} is multiplicatively
dependent and minimal for this property.

In the remainder of this article, we say that (x1, x2) ∈ Y (1)2 satisfies a
modular relation if ΦN (x1, x2) = 0 for some N ≥ 1. Here ΦN denotes the
Nth classical modular polynomial. We note (see Remark 4.2) that (x1, x2)
satisfies a modular relation if and only if (x1, x2) = (j(z), j(gz)) for some
z ∈ H, g ∈ GL+

2 (Q).
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Definition 6.6. Let f ∈ C(j) be non-constant. A modular–torsion tuple
(for f) is a tuple (x1, x2, ζ1, ζ2) ∈ V such that (x1, x2) satisfies a modular
relation, x1 6= x2, neither x1 nor x2 is j-special, and ζ1, ζ2 are both roots
of unity.

We now show that Conjecture 6.1 holds for n = 2 if f ∈ C(j) is non-
constant, satisfies both Condition 5.1 and the finiteness condition for pairs,
and is also such that there are only finitely many modular–torsion tuples.

Proposition 6.7. Let f ∈ C(j) be a non-constant modular function sat-
isfying both Condition 5.1 and the finiteness condition for pairs. Suppose
further that there are only finitely many modular–torsion tuples. Then Con-
jecture 6.1 holds for n = 2.

Proof. Here X = Y (1)2 × G2
m and V = {(x1, x2, t1, t2) : t1 = R(x1), t2 =

R(x2)}, so dimX = 4 and dimV = 2. We find all maximal atypical com-
ponents of V by considering the possible special subvarieties T of X. We
split into cases based on codimT .

(1) The only special subvariety of X of codimension 0 is X itself, and,
once again, V does not intersect X atypically.

(2) So consider next intersections V ∩ T , for T ⊂ X a special sub-
variety of codimension 1. So T is defined by just one of: a single
fixed Y (1) coordinate; a single modular relation among the Y (1)2

coordinates; a single fixed Gm coordinate; or a single multiplica-
tive relation among the G2

m coordinates. A component of such an
intersection V ∩ T is atypical only if it has dimension

> dimV + dimT − dimX = 1

Considering the possible T in turn, we see that this is impossible.
(3) Now suppose T ⊂ X is an special subvariety of codimension 2. A

component of the intersection V ∩ T is then atypical only if it is
positive-dimensional. This clearly rules out all cases where T is de-
fined either by two independent conditions on the Y (1)2 coordinates
or by two independent conditions on the G2

m coordinates. So we may
assume T is defined by one condition on the Y (1)2 coordinates and
one condition on the G2

m coordinates.
If both conditions are fixed coordinates, then atypical compo-

nents arise only when T has form either {(x, t1, ζ, t2) : t1 ∈ Y (1), t2 ∈
Gm} or {(t1, x, t2, ζ) : t1 ∈ Y (1), t2 ∈ Gm}, where ζ is a root of unity,
x is a j-special point, and ζ = R(x). Hence ζ is both a root of unity
and an f -special point. There are therefore only finitely many such
components by Proposition 5.12.

If one of the conditions is a fixed coordinate and the other con-
dition is a relation, then the intersection cannot be atypical. The
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final case to consider is where both the condition on the Y (1)2 co-
ordinates and the condition on the G2

m coordinates are relations.
Condition 5.1 then implies that the G2

m coordinates must be equal.
Since no non-constant modular function is invariant under a larger
subgroup of GL+

2 (Q) than Q× · SL2(Z), one must then have that
T = {(t1, t1, t2, t2) : t1 ∈ Y (1), t2 ∈ Gm}.

(4) Next let T be a special subvariety of X of codimension 3. Then T
intersects V atypically only if V ∩T is non-empty. The special sub-
variety T is defined either by two independent modular conditions
and one multiplicative condition, or by one modular condition and
two independent multiplicative conditions. We may assume that the
two conditions of the same type are both fixed coordinates.

If all three conditions are fixed coordinates, then either both the
first Y (1)2 coordinate and the first G2

m coordinate must be fixed,
or both the second Y (1)2 coordinate and the second G2

m coordinate
must be fixed. Let x be the corresponding fixed Y (1)2 coordinate
and ζ be the corresponding fixed G2

m coordinate. Then V ∩T is non-
empty only ifR(x) = ζ is both an f -special point and a root of unity.
But then atypical components of V ∩T must already be contained in
one of the finitely many positive-dimensional atypical components
arising from special subvarieties of form either {(x, t1, ζ, t2) : t1 ∈
Y (1), t2 ∈ Gm} or {(t1, x, t2, ζ) : t1 ∈ Y (1), t2 ∈ Gm}, where ζ =
R(x) is both f -special and a root of unity.

Let T be a special subvariety defined by two fixed Y (1)2 coor-
dinates, say x1, x2, and a multiplicative relation on the G2

m coordi-
nates. Then T has a non-empty intersection with V only if R(x1),
R(x2) satisfy this multiplicative relation. The points R(x1), R(x2)
are f -special points, so such T correspond to pairs of f -special
points that are multiplicatively dependent. The finiteness condition
for pairs implies that there are only finitely many such T , provided
the f -special points are distinct and neither is a root of unity.

If one of the f -special points is also a root of unity, then V ∩ T
is already contained in one of the atypical components described
above. If the f -special points are not distinct, then either V ∩ T is
contained in the positive-dimensional atypical component identified
above which arises from the special subvariety

{(t1, t1, t2, t2) : t1 ∈ Y (1), t2 ∈ Gm}

or x1, x2 are distinct j-special points satisfying R(x1) = R(x2). We
show that there are only finitely many possibilities for x1, x2 in the
second case.

Suppose there are infinitely many pairs of j-special points (x1, x2)
such that x1 6= x2, but R(x1) = R(x2). Then the subvariety of Y (1)2
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given by
{(x, y) ∈ Y (1)2 : R(x) = R(y)}

must contain infinitely many points (x, y) with x, y distinct j-special
points. André’s Theorem [2] then implies that there exists some
g ∈ GL+

2 (Q) such that the functions j(z), j(gz) are distinct and
R(j(z)) = R(j(gz)). This though contradicts the fact that no non-
constant modular function is invariant under a larger subgroup of
GL+

2 (Q) than Q× · SL2(Z). There are thus only finitely many such
pairs (x1, x2) and hence only finitely many of the resulting atypical
components.

If T is defined by one modular relation and two multiplicative
conditions (which we may assume are both fixed coordinates), then
either V ∩T is contained in one of the finitely many above-described
atypical components of positive dimension, or we have a maximal
atypical component of the form {(x1, x2, ζ1, ζ2)} where (x1, x2) sat-
isfies a modular relation, x1 6= x2, neither x1 nor x2 is j-special,
and ζ1, ζ2 are roots of unity. The finiteness of such components is
then guaranteed by our assumption on modular–torsion tuples.

(5) Finally, if T is a special subvariety of codimension 4, then we may
assume that all 4 coordinates are fixed. So T = {(x1, x2, ζ1, ζ2)},
where x1, x2 are j-special points and ζ1, ζ2 are roots of unity. In
this case, V ∩ T is non-empty only if ζ1 = R(x1) and ζ2 = R(x2),
in which case ζ1, ζ2 are both f -special points and roots of unity.
In this case V ∩ T is contained in one of the atypical components
considered previously.

Consequently, V has only finitely many maximal atypical components,
and so Conjecture 6.1 holds. �

We have thus shown that, for f ∈ C(j) non-constant and n = 2, Conjec-
ture 6.1 holds if f satisfies both Condition 5.1 and the finiteness condition
for pairs and, in addition, there are only finitely many modular–torsion
tuples. We are able to prove the finiteness of modular–torsion tuples for
non-constant f ∈ Q(j) satisfying Condition 5.1. To do this, we need first
the following lemma.

Lemma 6.8. Let f ∈ Q(j) be a non-constant modular function. For every
α > 1, there exists a constant c = c(f, α) > 0 such that, for each modular–
torsion tuple (x1, x2, ζ1, ζ2), one has that deg ζ1 ≤ c(deg ζ2)α and deg ζ2 ≤
c(deg ζ1)α.

Proof. Write f(z) = R(j(z)) for some rational function R with algebraic
coefficients. Let K be a number field over which R is defined. Since R is a
rational function, there is some integer n such that R is at most n-to-1. In
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this proof, all constants are positive and depend on f,R,K, n; any other
dependencies will be explicitly indicated.

Define e : C→ Gm by e(z) = exp(2πiz). We let
Fe = {u ∈ C : 0 ≤ Reu < 1}

be a fundamental domain for the map e. The map e, restricted to Fe, is
definable. We let

Y = {(ν, g, u) ∈ Fj ×GL+
2 (R)× Fe : gν ∈ Fj , R(j(gν)) = e(u)}.

The set Y is definable. We view Y as a definable family of fibres
Yν = {(g, u) ∈ GL+

2 (R)× Fe : gν ∈ Fj , R(j(gν)) = e(u)},
where ν ∈ Fj .

In particular, since the Counting Theorem of [27] is uniform in definable
families, for every ε > 0, there exists a constant c(ε) > 0 such that, for
every ν ∈ Fj , either N(Yν , T ) ≤ c(ε)T ε for all T ≥ 1, or else Yν contains a
positive-dimensional, connected semialgebraic set. Here N(Yν , T ) denotes
the number of rational points in the set Yν which have height ≤ T .

Suppose then that the lemma is false. Fix some α > 1 for which it fails.
Then, for every M ≥ 1, there is some modular–torsion tuple (x1, x2, ζ1, ζ2)
with either deg ζ2 > M(deg ζ1)α or deg ζ1 > M(deg ζ2)α. Fix some suitably
largeM and such a modular–torsion tuple (x1, x2, ζ1, ζ2). Write di = deg ζi.
Without loss of generality, we may assume that d1 ≤ d2, and so we must
have that d2 > Mdα1 . Write mi for the order of ζi. So di = φ(mi). Let
ν ∈ Fj be such that j(ν) = x1. We show that (x1, x2, ζ1, ζ2) gives rise to a
rational point of the set Yν in the following way.

We have that ζ2 = e(q), where q = a/m2 for some a ∈ Z with 0 < a < m2
and gcd(a,m2) = 1. In particular, H(q) = m2. Let Ei be an elliptic curve
with j-invariant xi. The modular relation satisfied by x1, x2 implies that
the elliptic curves E1, E2 are isogenous. We will bound the degree of this
isogeny.

First, we bound the degrees of x1, x2. Write

R(t) = p(t)
q(t) ,

where p(t), q(t) ∈ K[t]. Let d = [K : Q] and l = max{deg p,deg q}. Note
that xi is a root of the non-zero polynomial fi(t) = p(t)mi − q(t)mi . The
polynomial fi has degree ≤ lmi and coefficients in K. Hence

[Q(xi) : Q] ≤ [K(xi) : Q] = [K(xi) : K][K : Q] ≤ lmid.

So xi has degree bounded by c1mi.
Next, we bound the logarithmic heights of x1, x2. Viewing the rational

function R as a morphism P1 → P1, one may use [19, Theorem B.2.5] and
the fact that R(xi) = ζi is a root of unity to obtain that h(x1), h(x2) ≤ c2.
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We then use [26, (5.8)] to bound the semistable Faltings height hF(E1)
of the elliptic curve E1. We obtain that

hF(E1) ≤ c3 max{1, h(x1)}.
In particular, the above bound on h(x1) thus implies that hF(E1) ≤ c4.
Combining this bound on the Faltings height with the above degree bounds
on x1, x2, we may use [26, (5.10)] to deduce that there is an isogeny be-
tween E1 and E2 of degree N ≤ c5 max{m1,m2}5. Consequently, by [17,
Lemma 5.2], there exists g ∈ GL+

2 (Q) such that gν ∈ Fj , j(gν) = x2,
and the height of g (regarded as the vector of its entries) is bounded by
c6 max{m1,m2}50.

The modular–torsion tuple (x1, x2, ζ1, ζ2) thus gives rise to the rational
point (g, q) ∈ Yν , and this point has height ≤ c7 max{m1,m2}50. Since
φ(mi) = di, we may use the elementary lower bound φ(mi) ≥

√
mi/2 to

obtain that the height of this rational point is ≤ c8d
100
2 .

Now consider the conjugates of (x1, x2, ζ1, ζ2) over the field K(ζ1). Ob-
serve that

[K(ζ1, ζ2) : K(ζ1)][K(ζ1) : Q] = [K(ζ1, ζ2) : Q] ≥ [Q(ζ2) : Q] = d2,

so

[K(ζ1, ζ2) : K(ζ1)] ≥ d2
[K(ζ1) : Q]

= d2
[K(ζ1) : Q(ζ1)][Q(ζ1) : Q]

≥ d2
[K : Q]d1

.

Recall that d2 > Mdα1 . Hence, there are at least

[K(ζ1, ζ2) : K(ζ1)] ≥ c9M
1/αd

(α−1)/α
2

conjugates of (x1, x2, ζ1, ζ2) over the field K(ζ1).
We may enumerate the conjugates as (x(i)

1 , x
(i)
2 , ζ1, ζ

(i)
2 ). Note that, for

all of these conjugates, R(x(i)
1 ) = ζ1. Hence, there are at most n distinct

coordinates x(i)
1 among these conjugates since R is at most n-to-1. Let

ν1, . . . , νk ∈ Fj be such that j(ν1), . . . , j(νk) are all distinct and give all the
possible x(i)

1 coordinates. Note that k ≤ n.
Now each distinct conjugate (x(i)

1 , x
(i)
2 , ζ1, ζ

(i)
2 ) gives rise, in the same

way as above, to a distinct rational point which lies on one of the definable
sets Yν1 , . . . , Yνk

. Further, these rational points all have height bounded by
c8d

100
2 since every ζ(i)

2 is again a root of unity of order m2. Thus, there must
be at least one r ∈ {1, . . . , k} such that Yνr has at least c10M

1/αd
(α−1)/α
2

rational points of height ≤ c8d
100
2 .
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We now apply the above-stated form of the Counting Theorem with
ε = (α−1)/(100α) and T = c8d

100
2 . ProvidedM is suitably large (which we

may always assume), there must then exist some r ∈ {1, . . . , k} such that
Yνr contains a positive-dimensional, connected, semialgebraic set. Fix such
an r and let S be the corresponding semialgebraic set.

Define the map Θ: GL+
2 (R) × C → H × C by (g, u) 7→ (gνr, u). In par-

ticular, the map Θ is semialgebraic. The set Θ(S) ⊂ H × C is positive-
dimensional and semialgebraic. Define the map πe : H×C→ Y (1)×Gm =
X1 by πe = (j, e). Observe that Θ(S) ⊂ π−1

e (V1) since S ⊂ Yνr . Arguing
as in the proof of Proposition 5.2, we may find a complex algebraic subva-
riety W ⊂ C2 and a positive-dimensional complex-analytically irreducible
component A ⊂ (H × C) ∩ W such that A ⊂ π−1

e (V1). Ax–Schanuel for
the map πe (which follows from the Ax–Schanuel results in Section 4) then
implies that V1 must contain a positive-dimensional weakly special subva-
riety. The only weakly special subvarieties of V1 are points though, because
V1 = {(x, t) ∈ X1 : R(x) = t} and the map R is non-constant. We thus
obtain a contradiction, and the result is proved. �

Proposition 6.9. Suppose that f ∈ Q(j) is a non-constant modular func-
tion satisfying Condition 5.1. Then there are only finitely many modular–
torsion tuples.

Proof. Write f(z) = R(j(z)) for some rational function R with algebraic
coefficients. Let K be a number field over which R is defined. In this proof,
all constants are positive and may depend possibly on f,R,K; any other
dependencies will be explicitly indicated.

Observe that the proof of Proposition 6.7 implies that every modular–
torsion tuple (x1, x2, ζ1, ζ2) gives rise to a maximal atypical component
{(x1, x2, ζ1, ζ2)} of V . In particular, no modular–torsion tuple is contained
in a positive-dimensional atypical component of V .

We define the complexity ∆ of a modular–torsion tuple (x1, x2, ζ1, ζ2)
by ∆ = min{deg ζ1, deg ζ2}. The degree bound in Lemma 6.8 and the fact
that R is finite-to-one together imply that, for any C > 0, there are only
finitely many modular–torsion tuples with complexity ≤ C. Suppose then,
for contradiction, that there are infinitely many modular–torsion tuples. In
particular, there are modular–torsion tuples of arbitrarily large complexity.

Now let

Y =
{(g, z1, z2, u1, u2)

∈ GL+
2 (R)× F 2

j × F 2
e

:
gz1 = z2, R(j(z1)) = e(u1),

R(j(z2)) = e(u2)

}
,

and let
Z = {(g, u1, u2) : ∃ z1, z2 (g, z1, z2, u1, u2) ∈ Y }

be its projection. Both sets are definable.
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Suppose (x1, x2, ζ1, ζ2) is a modular–torsion tuple of complexity ∆. We
show that this tuple leads to a rational point on Z of bounded height. Say
ζ1 is a primitive mth root of unity and ζ2 is a primitive nth root of unity.
So deg ζ1 = φ(m1) and deg ζ2 = φ(m2). Write di = deg ζi. Without loss of
generality, we assume that d2 ≥ d1.

We have that ζ1 = e(k/m1) for some 0 ≤ k < m1 with gcd(k,m1) = 1
and ζ2 = e(l/m2) for some 0 ≤ l < m2 with gcd(l,m2) = 1. In particular,
H(k/m1) = m1 and H(l/m2) = m2.

Let E1, E2 be elliptic curves with j-invariants x1, x2 respectively. As in
the proof of Lemma 6.8, we may then bound the degrees and logarithmic
heights of x1, x2. Once again, we obtain that the degree of an isogeny be-
tween E1, E2 is bounded by c1(max{m1,m2})c2 . Let τ1, τ2 ∈ Fj such that
xi = j(τi). By [17, Lemma 5.2], there then exists g ∈ GL+

2 (Q) such that
gτ1 = τ2 and the height of g (viewed as a vector of its entries) is bounded
by c3(max{m1,m2})c4 .

The modular–torsion tuple (x1, x2, ζ1, ζ2) thus gives rise to the rational
point σ = (g, k/m1, l/m2) ∈ Z. The height bound on g, Lemma 6.8, and the
elementary estimate that φ(mi) ≥

√
mi/2 together imply that this point σ

has height bounded by c5∆c6 .
Observe that

[K(ζi) : K][K : Q] = [K(ζi) : Q] ≥ di ≥ ∆

since ∆ = min{d1, d2}, and so

[K(ζi) : K] ≥ c7∆.

The modular–torsion tuple (x1, x2, ζ1, ζ2) thus has ≥ c7∆ conjugates over
K. Each of these conjugates (x(r)

1 , x
(r)
2 , ζ

(r)
1 , ζ

(r)
2 ) is again a modular–torsion

tuple. In particular, note that each ζ(r)
i is again a root of unity of order mi.

Each distinct conjugate (x(r)
1 , x

(r)
2 , ζ

(r)
1 , ζ

(r)
2 ) thus gives rise, in the same

way as above, to a rational point (gr, kr/m1, lr/m2) ∈ Z which has height
bounded by c5∆c6 . Moreover, there must also be ≥ c7∆ distinct coordinates
kr/m1 and ≥ c7∆ distinct coordinates li/m2 among the resulting rational
points.

We now apply the Counting Theorem in the form of [22, Theorem 3.5]
to the set Z, with ε = 1/2c6 say. We may write the resulting basic block
families as Wi, where i = 1, . . . , J , for some constant J . In particular,
the rational points of Z with height at most T = c5∆c6 are contained
in ≤ c8T

1/2c6 = c9∆1/2 basic blocks, each of which is a fibre of one of
W1, . . . ,WJ .

Recall that the structure Ran,exp has analytic cell decomposition [14].
We may thus decompose each of the basic block families W1, . . . ,WJ into
finitely many analytic cells Pi, and moreover this may be done in such a
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way that it induces an analytic cell decomposition of each fibre of the basic
block family over its base.

As shown above, a modular–torsion tuple of complexity ∆ gives rise, via
its K-conjugates, to a collection of rational points (g, u1, u2) on Z which are
all of height ≤ c5∆c6 and among which there are ≥ c7∆ distinct u1 coordi-
nates and ≥ c7∆ distinct u2 coordinates. Provided that ∆ is suitably large,
we thus see that at least one of the analytic cells Pi must contain one of these
rational points and also have non-constant projection to both its Fe coor-
dinates. Fix such a cell P and such a rational point p = (gp, u1,p, u2,p) ∈ P .

The cell P is contained in a basic block B that is itself contained in
Z. As in the proof of [22, Proposition 3.4(1)], one may then find an open
neighbourhood ΩR ⊂ GL+

2 (R)× C2 of p such that the intersection ΩR ∩B
is a real semialgebraic set, which we denote S. Note that p ∈ S.

Provided that ∆ is sufficiently large, we must also have that

e(u1,p), e(u2,p) /∈ {f(w) : w ∈ H and f ′(w) = 0}.

Therefore, the function f is locally invertible at e(u1,p), e(u2,p). Given a
sufficiently small open neighbourhood Ω ⊂ GL2(C) × C2 of p, we may
therefore define an analytic subvariety A ⊂ Ω by

A =

(g, e(u1), e(u2))∈Ω :

g =
(
a b
c d

)
and∏

h1,h2

(
(ch1(e(u1)) + d)h2(e(u2))

− (ah1(e(u1)) + b)
)

= 0

,
where the product runs over all local inverses h1, h2 of f at e(u1,p), e(u2,p)
respectively which hit the fundamental domain Fe. Without loss of gener-
ality, we may assume that ΩR = Ω ∩ (GL+

2 (R)× C2), and thus S ⊂ A.
As in the proof of Proposition 5.2, we may now apply the results of [1].

There exists an open neighbourhood Ω′ ⊂ Ω of p and a set Q ⊂ Ω′, where
Q may be written as a finite union of irreducible Nash subsets of Ω′ which
each contain p, such that p ∈ Ω′ ∩ S ⊂ Q ⊂ A.

If every complex-analytically irreducible component of Q projects con-
stantly to one or more of its Fe coordinates, then the cell P would have
constant projection to (at least) one of its Fe coordinates by real analytic
continuation. This cannot happen. Hence, there must exist a complex alge-
braic subvarietyW ⊂ GL2(C)×C2 such that there is a complex-analytically
irreducible component D ⊂ Ω′ ∩W such that p ∈ D ⊂ A and D projects
non-constantly to both its Fe coordinates.

Denote by ν : W ν →W the normalisation of the variety W . There exists
an open neighbourhood in ν−1(W ∩A) of some preimage pν of p. We may
choose a point q in this neighbourhood such that, writing ν(q) = (g, u1, u2),
we have that u1 6= u1,p and u2 6= u2,p. By [11, Corollary 1.9], we may then
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find an irreducible complex algebraic curve T ⊂ W ν which passes through
the points pν , q.

The Zariski-closure of the set

{(z, gz, u1, u2) : z ∈ C, (g, u1, u2) ∈ ν(T )}

is then a complex algebraic surface, which we denote H. Let

πe = (j, j, e, e) : H2 × C2 → Y (1)2 ×G2
m,

where e(z) = exp(2πiz) as in the proof of Lemma 6.8. There exists a
positive-dimensional complex-analytically irreducible component H0 of
H ∩ π−1

e (V ) which has non-constant projection to both its ui coordinates
and also contains a point (z, gpz, u1,p, u2,p) whose image under πe is a
modular–torsion tuple.

The Ax–Schanuel results of Section 4 (applied with πe in place of π)
then imply that there exists a weakly special subvariety W0 of U such that
H0 ⊂ W0 ⊂ π−1

e (V ). Since this weakly special subvariety W0 has no con-
stant coordinates, it is in fact a special subvariety. It must also have codi-
mension at least two, in order to be contained in π−1

e (V ). Taking the image
under πe, we thus obtain a positive-dimensional atypical component of V
which contains πe(z, gpz, u1,p, u2,p). This is a positive-dimensional atypical
component of V which contains a modular–torsion tuple. However, we know
already that there are no such components. We thus obtain the desired con-
tradiction, and so the proof is complete. �

Recall that Proposition 5.2 implies that if f ∈ Q(j) is non-constant and
satisfies Condition 5.1, then the finiteness condition for pairs holds for f .
Therefore, one may deduce from Propositions 6.7 and 6.9 the following case
of Conjecture 6.1.

Proposition 6.10. Let f ∈ Q(j) be non-constant. Suppose that f satisfies
Condition 5.1. Then Conjecture 6.1 holds for n = 2.

7. An extension to finite rank

In this section we prove Theorem 1.7. As in Section 5, we will prove a
stronger conditional result under the assumption of Condition 5.1. Theo-
rem 1.7 then follows from Proposition 7.1 as it corresponds to those cases
where the divisor condition holds and Condition 5.1 is thus known via
Theorem 1.5.

Proposition 7.1. Let f : H→ C be a non-constant modular function such
that f ∈ Q(j). Assume Condition 5.1 holds for f . Let n ≥ 1 and Γ ≤ Gm
be of finite rank. Then there exist only finitely many n-tuples (σ1, . . . , σn)
of distinct f -special points such that the set {σ1, . . . , σn} is Γ-dependent,
but no proper subset of {σ1, . . . , σn} is Γ-dependent.
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Fix such a function f and such a group Γ. If Γ has rank 0, then the
result follows immediately from Proposition 5.2. So we may assume that Γ
has positive rank. As usual, we write f(z) = R(j(z)) for R some rational
function with algebraic coefficients. Let K be a number field containing the
coefficients of R.

The group Γ is of finite rank, so there exists Γ0 ≤ Γ finitely generated
such that for every γ ∈ Γ there exists m ≥ 1 such that γm ∈ Γ0. Thus every
Γ-dependent tuple is also Γ0-dependent. Therefore, we may and do assume
that Γ is finitely generated.

Further, f -special points are algebraic. So if
∏
σai
i = γ ∈ Γ for some f -

special points σi and ai ∈ Z, then γ ∈ Γ∩Q. Now Γ∩Q is a subgroup of the
finitely generated abelian group Γ, so is itself finitely generated. Replacing
Γ with Γ∩Q as necessary we may and do assume as well that Γ is generated
by algebraic elements.

We thus consider Γ = 〈b1, . . . , bk〉, where k ≥ 1 and every bi ∈ Q. A tuple
of f -special points (σ1, . . . , σn) is then Γ-dependent if some relation

n∏
i=1

σai
i =

k∏
i=1

bαi
i

holds with ai, αi ∈ Z and the ai not all zero. We may also assume that the
set {b1, . . . , bk} is multiplicatively independent; in particular, no bi is a root
of unity. We let K0 = K(b1, . . . , bk).

Now fix n ≥ 1. Let X = Xn,n+k = Y (1)n ×Gn+k
m , and

V = {(x1, . . . , xn, t1, . . . , tn, b1, . . . , bk) ∈ X : ti = R(xi) for i = 1, . . . , n}.

We refer to Section 4 for the definition of a (weakly) special subvariety
of X.

Now for the proof of Proposition 7.1. Constants c, c′ will be positive and
depend only on f , n, and Γ, but will vary between occurrences and are in
general non-effective. We note that the proofs of Lemmas 5.6 and 5.8 both
generalise straightforwardly when we replaceK withK0 in their statements.

Proof of Proposition 7.1. For a tuple σ = (σ1, . . . , σn) of f -special points,
define the complexity ∆(σ) of σ to be ∆(σ) = max{|∆(σ1)|, . . . , |∆(σn)|}.
Call an n-tuple (σ1, . . . , σn) of distinct f -special points such that the set
{σ1, . . . , σn} is Γ-dependent, but no proper subset of {σ1, . . . , σn} is Γ-
dependent, a Γ-tuple. We show that there are only finitely many Γ-tuples.

Suppose not. Then there are Γ-tuples σ of arbitrarily large complexity
∆(σ). Fix ν = (ν1, . . . , νk) ∈ F kexp a preimage of (b1, . . . , bk). Let Y be the
set

{(z, u ν, r, s) ∈ Fnj ×Fn+k
exp ×Rn+k ×R : R(j(z)) = exp(u), r · (u ν) = 2πis},
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where Fj , Fexp are the standard fundamental domains for the actions of
SL2(Z) on H and 2πiZ on C respectively (see Section 5). Then let Z be the
projection of Y to Fnj × Rn+k × R. Note that Y,Z are definable.

Fix a Γ-tuple σ = (σ1, . . . , σn) of complexity ∆ = ∆(σ). We may write
σi = R(xi) for some j-special point xi. The tuple σ satisfies some multi-
plicative relation

n∏
i=1

σai
i

k∏
i=1

bαi
i = 1

for ai, αi ∈ Z, with the ai not all zero. The point
σ̂ = (x1, . . . , xn, σ1, . . . , σn, b1, . . . , bk) ∈ Y (1)n ×Gn+k

m

has a preimage (z, u ν) ∈ Fnj × Fn+k
exp . This gives rise to a point

(z, u ν, β β′, δ) ∈ Y.
Here the β, β′, δ coordinates are rational integers, with the βi not all zero,
which record the multiplicative dependence of the σi, bi; that is,

n∑
i=1

βiui +
k∑
i=1

β′iνi = 2πiδ.

We may apply Lemma 5.7 to some minimally multiplicatively dependent
set S, where {σ1, . . . , σn} ⊂ S ⊂ {σ1, . . . , σn, b1, . . . , bk}. The integers βi, β′i
may thus be chosen such that

|βi| ≤ cdn+k(log d)
n∏
j=1
j 6=i

h(σj)

and
|β′i| ≤ cdn+k(log d)

n∏
j=1

h(σj).

Here d ≥ 2 is the degree of a number field containing σ1, . . . , σn, b1, . . . , bk.
(We absorb the dependency on the logarithmic heights of the bi into our
constant.) Using Lemmas 5.4 and 5.6, we may thus bound |βi| and |β′i|
by c∆n(n+k). Observe that for ui, νi ∈ Fexp, the imaginary part of ui, νi is
bounded by 2π in absolute value. Then, using the relation

n∑
i=1

βiui +
k∑
i=1

β′iνi = 2πiδ,

we may also bound |δ| by c∆n(n+k). Since βi, β′i, δ are rational integers, their
heights are also bounded by c∆n(n+k) since H(l) = |l| for l ∈ Z \ {0}.

The point (z, u ν, β β′, δ) projects to a point (z, β β′, δ) ∈ Z, which is
quadratic in the Fj coordinates and integral in the R coordinates. The
height of the z coordinates may be bounded by c∆ thanks to Lemma 5.5.
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Combining this with the height bounds from the previous paragraph, we
see that the height of the point (z, β β′, δ) is thus bounded by c∆n(n+k).
The Γ-tuple σ thus gives rise to a quadratic point of Z with height bounded
by c∆n(n+k).

By the aforementioned generalisation of Lemma 5.6 with ε = 1/4, a Γ-
tuple σ of complexity ∆ has ≥ c∆1/4 distinct conjugates over K0, provided
∆ is large enough. By the similar generalisation of Lemma 5.8 and the fact
that b1, . . . , bk ∈ K0, any K0-conjugate of such a Γ-tuple is again a Γ-tuple
and is also of complexity ∆. In particular, the K0-conjugates all satisfy the
same Γ-dependence.

Therefore, each K0-conjugate σ̃ of σ also gives rise, in the same way as
σ, to a quadratic point (z̃, β β′, δ̃) of Z with height bounded by c∆n(n+k).
Note that the β, β′ coordinates are the same for each conjugate. There-
fore, a Γ-tuple σ of sufficiently large complexity ∆ gives rise to at least
c′T 1/4n(n+k) quadratic points on Z with height at most T = c∆n(n+k), each
corresponding to a distinct Γ-tuple.

Let Z ′ be the image of Z under the map (z, r, s) 7→ (z, 2πis). Denote
by Y(β1,...,βn,β′

1...,β
′
k
) the fibre of Y over the point (β1, . . . , βn, β

′
1 . . . , β

′
k). We

may now apply the Counting Theorem in the form of [18, Corollary 7.2]
to Y(β1,...,βn,β′

1...,β
′
k
), and then complete the argument as in the proof of

Proposition 5.2. We will only sketch the remainder of the proof, and refer
to the proof of Proposition 5.2 for details.

Arguing as in the proof of Proposition 5.2, if the complexity ∆ of σ is
suitably large, then we obtain a complex algebraic subvariety W ⊂ Cn+1

and a complex-analytically irreducible component A ⊂ (Hn ×C)∩W such
that A has non-constant projection to its Hn coordinates, A contains a
point of Z ′ which corresponds to a K0-conjugate of σ, and A ⊂ Ṽ where

Ṽ =
{

(z, t) ∈ Hn × C :
n∏
i=1

f(zi)βi

k∏
i=1

b
β′

i
i = exp(t)

}
.

By Ax–Schanuel, we thus obtain that there are weakly special subvarieties
W1 ⊂ Hn andW2 ⊂ C such that A is contained inW1×W2 andW1×W2 ⊂
Ṽ . As in the proof of Proposition 5.2, one must have that W2 = {2πiδ′} for
some δ′ ∈ Z.

Therefore, W1 is a positive-dimensional weakly special subvariety of Hn

which is contained in the set{
z ∈ Hn :

n∏
i=1

f(zi)βi

k∏
i=1

b
β′

i
i = 1

}
.

Observe also that W1 contains a pre-image (τ1, . . . , τn) of some Γ-tuple
(f(τ1), . . . , f(τn)). In particular, f(W1) has no two identically equal co-
ordinates, since the f(τi) are pairwise distinct. In addition, all the βi are
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non-zero, since the set {f(τ1), . . . , f(τn)} is minimally Γ-dependent. Taking
the image of W1 under f , we therefore obtain a multiplicative dependence
modulo constants among some pairwise distinct GL+

2 (Q)-translates of f .
This contradicts Condition 5.1, and so we are done. �

For the n = 1 case, Proposition 7.1 holds unconditionally.

Proposition 7.2. Let f : H→ C be a non-constant modular function such
that f ∈ Q(j). Let Γ ≤ Gm be of finite rank. Then there exist only finitely
many f -special points σ such that the set {σ} is Γ-dependent.

Proof. If Γ has rank 0, then this follows from Proposition 5.12. Other-
wise, the proof proceeds identically to the proof of Proposition 7.1. Since
n = 1, one obtains that the function f(z) is multiplicatively dependent
modulo constants. One therefore applies at the last step the fact that f is
non-constant (rather than Condition 5.1), in order to obtain the necessary
contradiction. �

8. The Zilber–Pink conjecture in the finite rank case

8.1. The Zilber–Pink setting. We now put Theorem 1.7 in the context
of the Zilber–Pink conjecture.

For n, k ≥ 1, we set X = Xn,n+k = Y (1)n × Gn+k
m , U = Un,n+k =

Hn × Cn+k, and let π : U → X be given by

π(z1, . . . , zn, u1, . . . , un+k) = (j(z1), . . . , j(zn), exp(u1), . . . , exp(un+k)).

We define (weakly) special subvarieties of U,X as in Definition 4.1. An
atypical component of a subvariety V ⊂ X is defined as in Definition 4.7.

For the remainder of this paper, we fix f ∈ Q(j) non-constant and write
f(z) = R(j(z)) for some rational function R with algebraic coefficients. We
consider the Zilber–Pink conjecture for the family of subvarieties given by

Vn,k,b̄ =
{

(x1, . . . , xn, t1, . . . , tn, b1, . . . , bk)
∈ Xn,n+k

: ti = R(xi) for i = 1, . . . , n
}
,

where n, k ≥ 1 and b̄ = (b1, . . . , bk) ∈ Gk
m. The statement of the Zilber–Pink

conjecture is as follows.

Conjecture 8.1 (Zilber–Pink conjecture). Let n, k ≥ 1 and b̄ ∈ Gk
m. Then

there are only finitely many maximal atypical components of Vn,k,b̄.

Suppose Γ ≤ Gm is a subgroup of finite, positive rank. If f satisfies Con-
dition 5.1, then Conjecture 8.1 implies the finiteness of n-tuples of distinct
f -special points that are Γ-dependent and minimal for this property, i.e.
Proposition 7.1. To show this, we first prove the following lemma via an
easy modification of the proof of Lemma 6.2.



500 Guy Fowler

Lemma 8.2. Suppose that f satisfies Condition 5.1 and Γ ≤ Gm is a
subgroup of finite, positive rank. Then there exists k ≥ 1 and b̄ ∈ Gk

m with
the following property: an n-tuple σ = (σ1, . . . , σn) of distinct f -special
points such that the set {σ1, . . . , σn} is minimally Γ-dependent gives rise to
a point σ̂ ∈ Vn,k,b̄ such that {σ̂} is a maximal atypical component of Vn,k,b̄.

Proof. There is a finitely generated Γ0 ⊂ Γ such that, for every γ ∈ Γ,
there exists m ≥ 1 with γm ∈ Γ0. Write Γ0 = 〈b1, . . . , bk〉 for some
b1, . . . , bk ∈ Gm. We may assume that the set {b1, . . . , bk} is multiplica-
tively independent. Let n ≥ 1. Set X = Xn,n+k and V = Vn,k,b̄, where
b̄ = (b1, . . . , bk).

Let σ = (σ1, . . . , σn) be an n-tuple of distinct f -special points such that
{σ1, . . . , σn} is Γ-dependent, but no proper subset of {σ1, . . . , σn} is Γ-
dependent. Then

σa1
1 . . . σan

n bα1
1 . . . bαk

k = 1
for some integers ai, αi with the ai not all zero. There exist j-special points
x1, . . . , xn such that each σi = R(xi). The point

σ̂ = (x1, . . . , xn, σ1, . . . , σn, b1, . . . , bk) ∈ V

then lies in the intersection of V with the special subvariety T of X
defined by

T = {(z̄, t̄, ū) : zi = xi for i = 1, . . . , n and ta1
1 . . . tan

n u
α1
1 . . . uαk

k = 1}.

Here codimT = n+ 1 and so dimT = n+ k − 1. Thus,

dimV + dimT − dimX = n+ (n+ k − 1)− (2n+ k) = −1.

So σ gives rise to an atypical component {σ̂} of V .
Since Condition 5.1 holds for f and the bi are multiplicatively indepen-

dent, one may then show, as in the proof of Lemma 6.2, that this atypical
point σ̂ cannot be contained in any atypical component of V of positive
dimension. �

The desired result then follows straightforwardly.

Proposition 8.3. Suppose Condition 5.1 and Conjecture 8.1 hold for f .
Let Γ ≤ Gm be a subgroup of finite, positive rank. Then, for each n ≥
1, there are only finitely many n-tuples (σ1, . . . , σn) of distinct f -special
points such that the set {σ1, . . . , σn} is Γ-dependent, but no proper subset
of {σ1, . . . , σn} is Γ-dependent.

Proof. Let Γ0 ⊂ Γ be a finitely generated subgroup such that, for every
γ ∈ Γ, there exists n ≥ 1 such that γn ∈ Γ0. Let {b1, . . . , bk} be a multi-
plicatively independent set of generators for Γ0. Set b̄ = (b1, . . . , bk) ∈ Gk

m.
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Suppose then that f satisfies Condition 5.1 and Conjecture 8.1. Let n≥1.
Then Lemma 8.2 shows that any n-tuple σ = (σ1, . . . , σn) of distinct f -
special points such that the set {σ1, . . . , σn} is Γ-dependent and minimal
for this property gives rise to a maximal atypical component {σ̂} of the
subvariety Vn,k,b̄. Further, distinct n-tuples σ of this kind give rise, in this
way, to distinct points σ̂ ∈ Vn,k,b̄. By Conjecture 8.1, there are only finitely
many maximal atypical components of Vn,k,b̄. Hence, there are only finitely
many such n-tuples. �

In particular, Theorem 1.7 would follow from Conjecture 8.1. However,
we are not able to prove Conjecture 8.1 in general. For n = 1 though we can
prove Conjecture 8.1. The proof uses Proposition 7.2. When n = 2, we show
that Conjecture 8.1 holds if f satisfies Condition 5.1 and also a suitable
finiteness assumption for points satisfying certain special conditions is true.

8.2. The Zilber–Pink conjecture for n = 1.

Proposition 8.4. Conjecture 8.1 holds for n = 1.

Proof. Fix k ≥ 1 and b̄ = (b1, . . . , bk) ∈ Gk
m. We look for the atypical

components of the subvariety
V = {(x, t, b̄) : t = R(x)} ⊂ X = Y (1)×G1+k

m .

So dimV = 1 and dimX = k + 2. If the set {b1, . . . , bk} is multiplicatively
dependent, then V is itself atypical and hence the only maximal atypical
component. So we may assume that the set {b1, . . . , bk} is multiplicatively
independent; in particular, no bi is a root of unity.

Consider the possible special subvarieties T of X. Clearly X cannot itself
intersect V atypically, so we look only at proper special subvarieties. We
may write T = T1× T2, where T1 is an special subvariety of Y (1) and T2 is
a special subvariety of G1+k

m .
Look first at those T where T1 is a proper special subvariety. The con-

dition on T1 must be a fixed coordinate. So T = {x} × T2, where x is a
j-special point and T2 is a special subvariety of Gk+1

m . If T = {x} × G1+k
m ,

then V ∩ T = {(x,R(x), b1, . . . , bk)}, which is not atypical since
dimV + dimT − dimX = 1 + (k + 1)− (k + 2) = 0.

So we must have that T = {x} × T2 with T2 a proper special subvariety
of G1+k

m . Then dimT ≤ k, and so the intersection V ∩ T is atypical if it is
non-empty.

Suppose for now that T2 has at least one fixed coordinate (i.e. a root
of unity). If V ∩ T is non-empty, then this fixed coordinate ζ of T2 must
be in the first of the G1+k

m coordinates, since no bi is a root of unity. We
then require for V ∩ T 6= ∅ also that ζ = R(x), and so ζ is both f -special
and a root of unity. By Proposition 5.12, there are at most finitely many
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such points. Thus, there are only finitely many atypical components of this
form.

So we may suppose that T2 has no fixed coordinate. Then some mul-
tiplicative relation must hold on T2 since T2 is proper. Then V ∩ T is
non-empty (and hence atypical) only if R(x), b1, . . . , bk satisfy this mul-
tiplicative relation, which must involve R(x) since the bi are multiplica-
tively independent. Note that R(x) is an f -special point. By Proposition 7.2
applied to the finite rank group Γ = 〈b1, . . . , bk〉, there are only finitely many
f -special points σ which satisfy a multiplicative relation over b1, . . . , bk. So
there are only finitely many such R(x) to consider and hence only finitely
many such atypical components.

It thus remains to consider those cases where T1 = Y (1). So T = Y (1)×
T2, where T2 must be a proper special subvariety of Gk+1

m since T ( X.
Then

V ∩ T = {(t, R(t), b1, . . . , bk) : (R(t), b1, . . . , bk) ∈ T2}.

The subvariety T2 of G1+k
m is proper, so either some coordinate is fixed in T2

or a multiplicative relation holds. If V ∩T 6= ∅, then any fixed coordinate in
T2 must be the first coordinate since no bi is a root of unity. Hence in this
case V ∩ T must be finite. Now suppose some multiplicative relation holds
on T2. Since the bi are multiplicatively independent, if V ∩ T 6= ∅, then
this multiplicative relation must involve the first coordinate of T2. Write
ta1
1 . . . t

ak+1
k+1 = 1 for this relation (so a1 6= 0). The equation

ta1ba2
1 . . . b

ak+1
k = 1

has only finitely many solutions t. So V ∩ T is finite.
In either of these cases, dim(V ∩ T ) = 0. So the components of the

intersection V ∩ T are then atypical only if

0 > dimV + dimT − dimX

= 1 + (1 + dimT2)− (k + 2)
= dimT2 − k,

i.e. if dimT2 < k. So at least two independent conditions must hold on
T2. Any fixed coordinate condition must apply to the first coordinate, as
otherwise V ∩ T would be empty since no bi is a root of unity. Since the
two conditions are independent, at least one of them must therefore be
a multiplicative relation. Further, if V ∩ T 6= ∅, then this multiplicative
relation must involve the first coordinate since the bi are multiplicatively
independent. This then rules out the possibility of the first coordinate of T2
being fixed because that would then imply the existence of a multiplicative
relation among the bi if V ∩ T 6= ∅. So we must have that the second
condition is also a multiplicative relation, and this multiplicative relation
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must again involve the first coordinate of T2 for the same reason as before.
So we have T2 defined by conditions

tata1
1 . . . tak

k = 1,

ta
′
t
a′

1
1 . . . t

a′
k
k = 1

with a, a′ 6= 0. If V ∩ T 6= ∅, then there is some t such that
taba1

1 . . . bak
k = 1,

ta
′
b
a′

1
1 . . . b

a′
k
k = 1.

Since the two multiplicative conditions are independent we may then elimi-
nate t to get a multiplicative dependence among b1, . . . , bk, a contradiction.
Hence there are no atypical components of this form, and the proof is com-
plete. �

8.3. The Zilber–Pink conjecture for n = 2. In this subsection, we
show that Conjecture 8.1 for V2,k,b̄ follows from Condition 5.1 together with
a finiteness statement for pairs (x1, x2) ∈ Y (1)2 satisfying certain special
conditions.

Definition 8.5. Let Γ ≤ Gm. We define an (f,Γ)-pair to be a pair (x1, x2) ∈
Y (1)2 such that (x1, x2) satisfies a modular relation, R(x1) is Γ-dependent,
and R(x2) is Γ-dependent.

We now prove the following conditional version of Conjecture 8.1 for
n = 2.

Proposition 8.6. Suppose that f satisfies Condition 5.1. Let k ≥ 1 and
b̄ = (b1, . . . , bk) ∈ Gk

m. Set Γ = 〈b1, . . . , bk〉 ≤ Gm. Suppose that there are
only finitely many (f,Γ)-pairs (x1, x2) with x1 6= x2 and x1, x2 not j-special.
Then Conjecture 8.1 holds for V2,k,b̄.

Proof. Write X = Y (1)2 ×G2
m. We look for the atypical components of

V = {(x1, x2, t1, t2, b1, . . . , bk) : t1 = R(x1), t2 = R(x2)} ⊂ X.
So dimV = 2 and dimX = k+ 4. A special subvariety T of X gives rise to
an atypical component of V if

dim(V ∩ T ) > dimV + dimT − dimX = 2− codimT.

If the set {b1, . . . , bk} is multiplicatively dependent, then V is itself atyp-
ical and hence the only maximal atypical component. Thus we may assume
that the set {b1, . . . , bk} is multiplicatively independent. The group Γ is
of finite rank and so, by Proposition 7.1, for every n ≥ 1 there are only
finitely many n-tuples of distinct f -special points which are Γ-dependent
and minimal for this property.
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Consider the possible special subvarieties T of X. We find those T that
give rise to atypical components of V . We split into cases according to
codimT .

(1) Clearly X cannot itself intersect V atypically, so we only need to
look at proper special subvarieties.

(2) Suppose codimT = 1. Then some component of V ∩ T is atypical
if and only if dim(V ∩ T ) ≥ 2. If T is defined by one fixed multi-
plicative coordinate, then dim(V ∩T ) is either 0 or 1 depending on
whether this fixed coordinate is one of the first two Gm coordinates
or not. In either case, the intersection is not atypical. If T is defined
by specifying one fixed modular coordinate, then dim(V ∩ T ) = 1
and the intersection is not atypical. Similarly if T is defined by a
single modular relation. So the only case left is where T is defined
by a multiplicative relation. Then, since the bi are multiplicatively
independent, this multiplicative relation must involve at least one of
the first two Gm coordinates if V ∩T 6= ∅. But then dim(V ∩T ) = 1
and the intersection is not atypical.

(3) Next we look at codimT = 2. Then a component of V ∩ T is atyp-
ical if and only if it is positive dimensional. Clearly then T cannot
be defined by two independent modular conditions. Suppose T is
defined by two independent multiplicative conditions (either fixed
coordinates or multiplicative relations). If V ∩ T 6= ∅, then each of
these conditions must involve at least one of the first two Gm coordi-
nates since the bi are multiplicatively independent. In all such cases,
one then sees that V ∩ T must be finite and hence its components
cannot be atypical.

So T must be defined by one modular condition and one multi-
plicative condition. If both conditions are fixed coordinates, then
V ∩T is positive dimensional only if the two conditions either both
apply to the respective first coordinate or both apply to the re-
spective second coordinate, and they also satisfy ζ = R(x), where
ζ is the multiplicative fixed coordinate and x is the fixed modular
coordinate. In such cases, ζ is both an f -special point and a root
of unity, and so by Proposition 5.2 there are only finitely many
atypical components of this kind.

If T is defined by a modular relation and a multiplicative relation,
then, by Condition 5.1 and the multiplicative independence of the
bi, the intersection V ∩T cannot be positive dimensional unless the
multiplicative relation has the form x = y. Since no non-constant
modular function is invariant under a larger subgroup of GL+

2 (Q)
than Q× · SL2(Z), the modular relation must also be of the form
x = y. So there is just one such atypical component.
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Suppose T is defined by a modular relation and a fixed multi-
plicative coordinate. Then this fixed coordinate must be one of the
first two G2+k

m coordinates. But then the modular relation on the
Y (1)2 coordinates implies that V ∩ T is finite and so not atypical.

If T is defined by a multiplicative relation and a fixed modular
coordinate, then V ∩T is positive dimensional only if the multiplica-
tive relation involves the G2+k

m coordinate corresponding to the fixed
Y (1)2 coordinate, but not the other of the first two G2+k

m coordi-
nates. If the fixed modular coordinate is given by the j-special point
x, then the f -special point R(x) is Γ-dependent since it satisfies a
multiplicative relation over the bi. Hence, by Proposition 7.1, there
are only finitely many atypical components of this form to consider.

(4) When codimT = 3, the components of the intersection V ∩ T are
atypical if and only if V ∩ T 6= ∅. If all three conditions defining
T are fixed coordinates, then V ∩ T 6= ∅ implies that V ∩ T must
already be contained in one of the positive dimensional atypical
components arising from T defined by a fixed modular coordinate
and a fixed multiplicative coordinate. So we may assume that at
least one condition defining T is a relation.

If there were three independent multiplicative conditions defin-
ing T , then V ∩T 6= ∅ would imply a multiplicative relation among
the bi, which is impossible. Clearly one cannot have three indepen-
dent conditions on the Y (1)2 coordinates. So there must be at least
one modular condition and at least one multiplicative condition
defining T .

If there are two independent modular conditions, then we may
assume these are fixed coordinates. The other condition must then
be a multiplicative relation, and this relation must involve at least
one of the first two G2+k

m coordinates if V ∩ T 6= ∅ since the bi are
multiplicatively independent. If the multiplicative relation involves
only one of the first two G2+k

m coordinates, then the corresponding
fixed modular coordinate x gives rise to a Γ-dependent f -special
point R(x). We are thus in one of the positive-dimensional atypical
components arising from a special subvariety of codimension 2.

If the multiplicative relation involves both the first two G2+k
m

coordinates, then the fixed modular coordinates x1, x2 give rise
to a Γ-dependent pair of f -special points (R(x1), R(x2)). If some
R(xi) is Γ-dependent, then we are in one of the previously identi-
fied atypical components. We may thus assume that no subtuple of
(R(x1), R(x2)) is Γ-dependent. Since there are only finitely many
pairs of j-special points (x1, x2) with x1 6= x2 and R(x1) = R(x2),
as shown in the proof of Proposition 6.7, we may also assume that
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R(x1) 6= R(x2). It thus follows from Proposition 7.1 that there are
at most finitely many maximal atypical components of this form.

So we may suppose that T is defined by two multiplicative condi-
tions and one modular condition. If the multiplicative conditions are
both fixed coordinates, then the modular condition is a relation. We
thus have that V ∩ T = {(x1, x2, ζ1, ζ2, b1, . . . , bk)}, where (x1, x2)
satisfies a modular relation, ζ1, ζ2 are roots of unity, and ζi = R(xi)
for i = 1, 2. By Proposition 6.9, there are only finitely many such
components satisfying the additional restrictions x1 6= x2 and nei-
ther x1 nor x2 is j-special. If these additional restrictions are not
met, then we are in one of the previously identified atypical com-
ponents.

So we may assume that at least one of the multiplicative condi-
tions is a relation; clearly, this relation must involve at least one of
the first two G2+k

m coordinates. Suppose the modular condition is a
fixed coordinate x. If the second multiplicative condition is a fixed
coordinate ζ, then clearly this must be one of the first two G2+k

m
coordinates. Further since ζ is a root of unity, we can eliminate
this coordinate from the multiplicative relation. If V ∩T 6= ∅, then,
according to whether the two fixed coordinates are in the same re-
spective position or not, either ζ = R(x) is both a root of unity
and f -special or (R(x), b1, . . . , bk) satisfy the multiplicative relation
and so R(x) is a Γ-dependent 1-tuple. Thus such components are
contained in positive dimensional atypical components arising from
special subvarieties of codimension 2.

So now suppose the modular condition is a fixed coordinate x
and both the multiplicative conditions are relations. If V ∩ T 6= ∅,
then both relations must involve at least one of the first two G2+k

m
coordinates. They cannot both involve only the first (respectively
the second) of the first two G2+k

m coordinates, since by their inde-
pendence we would then be able to obtain a relation among the
bi. If both relations involve both the first two Gk+2

m coordinates,
then we may eliminate either of these two coordinates. Thus we
may assume that the first relation involves the first but not the
second G2+k

m coordinate and that the second relation involves the
second but not the first G2+k

m coordinate. The components of V ∩T
are therefore contained in some of the already identified positive
dimensional atypical components.

We thus reduce to considering when the modular condition is a
relation and at least one of the multiplicative conditions is a rela-
tion. Since the bi are multiplicatively independent, if V ∩ T 6= ∅,
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then any component of V ∩ T must have the form

{(x1, x2, R(x1), R(x2), b1, . . . , bk)}

where (x1, x2) satisfies a modular relation andR(x1), R(x2) are both
(individually) Γ-dependent. Any such (x1, x2) is an (f,Γ)-pair. The
finiteness of the resulting maximal atypical components then fol-
lows from the assumption on (f,Γ)-pairs in the hypotheses of the
proposition. This is because if x1 = x2 or some xi is j-special, then
the corresponding component of V ∩ T is already contained in one
of the atypical components above.

(5) We now consider the case when codimT ≥ 4. If T is defined by
≥ 3 independent multiplicative conditions and V ∩ T 6= ∅, then we
can eliminate the first two G2+k

m coordinates from these relations
and obtain a multiplicative dependency among b1, . . . , bk. This ob-
viously cannot happen. Clearly, there can also be no more than two
independent modular conditions defining T . Thus the only case to
consider is when T is defined by two modular conditions and two
multiplicative conditions.

The components of the intersection V ∩T are then atypical if and
only if V ∩T 6= ∅. We may assume that the two modular conditions
are both fixed coordinates. If one of the multiplicative conditions is
a fixed coordinate, then this must be one of the first two G2+k

m co-
ordinates. If V ∩T 6= ∅, then the root of unity corresponding to this
fixed coordinate must also be an f -special point because the respec-
tive modular coordinate is j-special. In this case, the intersection
is contained in one of the already identified positive dimensional
atypical components. Therefore we may assume that both the mul-
tiplicative conditions are relations. The components that can arise
here are thus all contained in larger atypical components identified
in (3). �

We note here the similarity between the finiteness assumption on (f,Γ)-
pairs contained in the hypotheses of Proposition 8.6 and the finiteness state-
ment for modular–torsion tuples in Proposition 6.9. In both cases, one is
dealing with the atypical components which arise from one modular rela-
tion and two independent multiplicative relations. However, in the case of
Proposition 6.9 we are able to prove finiteness, whereas in Proposition 8.6
we must assume it.

The difference is that in Proposition 6.9 the points R(x1), R(x2) are roots
of unity, since if R(x1), R(x2) satisfy two independent multiplicative rela-
tions then they must both be roots of unity. One thus obtains that x1, x2 are
algebraic and their heights are bounded, which is crucial for the finiteness
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proof. In contrast, for an (f,Γ)-pair (x1, x2) the multiplicative relations sat-
isfied by R(x1), R(x2) involve also the generators b1, . . . , bk of Γ. One thus
obtains only the weaker condition of each R(xi) being Γ-dependent, rather
than a root of unity. In particular, we thus do not seem able to obtain
suitable bounds on the heights of x1, x2 (they might not even be algebraic)
in order to prove the finiteness of the pairs (x1, x2) by a modified version
of the argument for Proposition 6.9.
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